Review for Exam I

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I
Preliminaries: Appendix A

- Mean and variance.
- Covariance.
- Independent random variables; formulae for mean and variance.
- Sums of independent normal random variables. Why important?
- Central limit theorem.
- (A.4) $N(\mu, \sigma)$, t_ν, F_{ν_1,ν_2}, χ^2_ν distributions. Why important?
One & two sample inference: normal data

- (A.6) $Y_1, \ldots, Y_n \overset{iid}{\sim} N(\mu, \sigma^2)$. CIs and $H_0 : \mu = \mu_0$. Extension to paired data.
- (A.7) Two-sample problem with normal data; equal and unequal variances.
- Checking normality: Q-Q plots, formal tests, histograms, boxplots. Outliers.
One & two sample inference: nonparametric

- Sign test for population median. Assumptions?
- Wilcoxon signed rank test for population median. Assumptions?
- Mann-Whitney-Wilcoxon test for two samples. Assumptions?
Simple linear regression: minimal assumptions

- (1.3) $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$. Assumptions?
- Interpretation of β_0, β_1, and σ.
- Matrix form of the model.
- (1.6) Least squares. Normal equations. Lots of algebra to get b_0 and b_1.
- Introduction to $\hat{Y}_i = b_0 + x_i b_1$ and $e_i = Y_i - \hat{Y}_i$.
- Estimation: OLS leads to BLUEs (b_0, b_1).
- (1.7) $\text{MSE} = \frac{1}{n-p} \sum_{i=1}^{n} (Y_i - x_i' b)^2$ estimates σ^2.
Simple linear regression: normal errors

- $\epsilon_i \overset{iid}{\sim} N(0, \sigma^2)$. Why?
- (1.8) OLS estimators (b_0, b_1) also MLE under normality.
- (2.1) Both b_0 and b_1 are linear combination of independent normals...
- Inference about b_1: CI & testing.
- (2.3) $b = (b_0, b_1)$ bivariate normal. Leads to inference about
 1. (2.4) $E(Y_h) = \beta_0 + \beta_1 x_h$. Mean of everyone w/ x_h.
 2. (2.5) $Y_h = \beta_0 + \beta_1 x_h + \epsilon_h$. New obs. at x_h.
- Table of regression effects. Toluca data.
Simple linear regression: ANOVA, SS, tests, & correlation

- (2.7) $SSTO = SSR + SSE$, ANOVA table, F-test for $H_0 : \beta_1 = 0$.
- (2.8) General linear test – “big model / little model”.
- (2.9) R^2 and $r = corr(x, Y)$.
- (2.11) Bivariate normal distribution, Pearson correlation between x and Y, Spearman correlation.
Matrices and vectors

- (5.2) Matrix addition, (5.3) matrix multiplication, (5.4) symmetric matrix, transpose, (5.6) inverse of a matrix.
- (5.8) Random vectors.
- (5.9) Simple linear regression and two-sample problem using matrices.
- (5.10) $b = (X'X)^{-1}X'Y$ are least-squares estimators.
Random vectors (5.8)

Let \(Y \in \mathbb{R}^p \) be random with \(E\{Y\} = \mu \) and \(\text{cov}\{Y\} = \Sigma \). Let \(a \in \mathbb{R}^p \) and \(A \in \mathbb{R}^{q \times p} \). Then

\[
E\{AY + a\} = A\mu + a,
\]

and

\[
\text{cov}\{AY + a\} = A\Sigma A'.
\]

If \(Y \sim N_p(\mu, \Sigma) \) then

\[
AY + a \sim N_q(A\mu + a, A\Sigma A').
\]

Recall \(\hat{Y} \) and \(e \) from multiple regression, the fitted values and residuals. For what \(A \) can we write \(\hat{Y} = AY \)? For what \(A \) can we write \(e = AY \)?

Write \(\text{SSTO} = SSR + SSE \) in terms of matrices.
Multiple regression

- (6.1) $Y_i = \beta_0 + \beta_1 x_{i1} + \cdots + x_{ik}\beta_{ik} + \epsilon_i$. Binary predictors.
- Types of models that fit into this framework. Interpretation of individual regression effects.
- Dwayne Portrait Studios, Inc.
- (6.2) Matrix approach $Y = XB + \epsilon$.
- (6.3) Estimation: OLS & MLE.
- (6.4) Fitted values $\hat{Y} = Xb$ and residuals $e = Y - \hat{Y}$.
- (6.5) ANOVA table, F-test for $H_0 : \beta_1 = \cdots = \beta_k = 0$, R^2.
- (6.6) Inference about b and each b_j. Note $\hat{\beta} \sim N_p(\beta, (X'X)^{-1}\sigma^2)$. Replace σ^2 by MSE to get $se(b_j)^2$.
- (6.7) Estimating $x_h'\beta$ and $x_h'\beta + \epsilon_h$.
- Table of regression effects.
Assumptions to check: (a) linear mean, (b) constant variance, (c) normal errors. Independence discussed in Chapter 12.

(3.2–3.3) Residual plots: (a) e_i vs. x_j for $j = 1, \ldots, k$, (b) e_i vs. \hat{Y}_i, (c) normal probability plot of e_1, \ldots, e_n.

(6.8) Scatterplot matrix (marginal relationships only).

(3.9 & 6.8) Transformations in x_1, \ldots, x_k and in Y. Box-Cox family for Y.

(3.6 & 6.8) Breusch-Pagan test for constant variance.
Extra SS, multicollinearity, coef. partial det., VIFs

(7.1) Extra sums of squares, how much of SSTO gets eaten up by adding x_3, x_4 to a model with x_1, x_2? Answer: $SSR(x_3, x_4|x_1, x_2)$. Definition. Sequential SS: $SSR(x_1)$, $SSR(x_2|x_1)$, $SSR(x_3|x_1, x_2)$, etc.

(7.3) General linear test of $H_0: \mathbf{M}\beta = \mathbf{m}$, SAS test statement. Dropping several predictors at once.

(7.4) $R^2_{Y_{23|14}} = SSR(x_2, x_3|x_1, x_4)/SSE(x_1, x_4)$, etc.

(7.6) Multicollinearity: VIF_i’s, correlation matrix of predictors. Does multicollinearity necessarily indicate a poor model? How does severe multicollinearity ($VIF_j > 10$) affect interpretation of β_j?
Closed book, closed notes.

Covers Chapters 1 through 7 plus one and two sample methods from first three lectures.

Anything in the notes is fair game, but I will not ask you to reproduce long formulas, e.g. the formula for a prediction interval.

Go over homeworks 1–4.

Need to know what SAS procs do, e.g. test command in proc reg. Also npar1way, ttest, gplot, etc.

Mostly short answer.