Model: a mathematical approximation of the relationship among real quantities (equation & assumptions about terms).

- We have seen several models for an outcome variable from either one or two populations.
- Now we’ll consider models that relate an outcome to one or more continuous predictors.

- **Functional relationships** are perfect. Realizations \((X_i, Y_i)\) solve the relation \(Y = f(X)\).

- A **statistical relationship** is not perfect. There is a trend plus error. Signal plus noise.
Section 1.1: relationships between variables

- A **functional relationship** between two variables is deterministic, e.g. \(Y = \cos(2.1x) + 4.7 \). Although often an approximation to reality (e.g. the solution to a differential equation under simplifying assumptions), the relation itself is “perfect.” (e.g. page 3)

- A **statistical** or **stochastic** relationship introduces some “error” in seeing \(Y \), typically a **functional relationship** plus **noise**. (e.g. Figures 1.1, 1.2, and 1.3; pp. 4–5).

Statistical relationship: not a perfect line or curve, but a general tendency plus slop.
Selenium protects marine animals against mercury poisoning.

$n = 20$ Beluga whales were sampled during a traditional Eskimo hunt; tooth Selenium (Se) and liver Se were measured.

Would be useful to be able to use tooth Selenium as a proxy for liver Selenium (easier to get).

Same idea with “biomarkers” in biostatistics.

data whale;
input liver tooth @@;
label liver="Liver Se (mcg/g)"; label tooth="Tooth Se (ng/g)";
datalines;
6.23 140.16 6.79 133.32 7.92 135.34 8.02 127.82 9.34 108.67
10.00 146.22 10.57 131.18 11.04 145.51 12.36 163.24 14.53 136.55
15.28 112.63 18.68 245.07 22.08 140.48 27.55 177.93 32.83 160.73
36.04 227.60 37.74 177.69 40.00 174.23 41.23 206.30 45.47 141.31
;
proc sgscatter; plot liver*tooth / reg; * or pbspline or nothing;
Must decide what is the proper *functional form* for the trend in this relationship, e.g. linear, curved, piecewise continuous, cosine?
Is a line “correct?”
How about a curve?
Taking log of both variables.
Section 1.3: Simple linear regression model

For a sample of \(n \) pairs \(\{(x_i, Y_i)\}_{i=1}^n \), let

\[
Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \ldots, n,
\]

where

- \(Y_1, \ldots, Y_n \) are realizations of the response variable,
- \(x_1, \ldots, x_n \) are the associated predictor variables,
- \(\beta_0 \) is the intercept of the regression line,
- \(\beta_1 \) is the slope of the regression line, and
- \(\epsilon_1, \ldots, \epsilon_n \) are unobserved, uncorrelated random errors.

This model assumes that \(x \) and \(Y \) are *linearly* related, i.e. the mean of \(Y \) changes linearly with \(x \).
Assumptions about the random errors

We assume that $E(\epsilon_i) = 0$, $\text{var}(\epsilon_i) = \sigma^2$, and $\text{corr}(\epsilon_i, \epsilon_j) = 0$ for $i \neq j$: mean zero, constant variance, uncorrelated.

- $\beta_0 + \beta_1 x_i$ is the *deterministic* part of the model. It is fixed but unknown.
- ϵ_i represents the random part of the model.

The goal of statistics is often to separate signal from noise; which is which here?
Mean and variance of each Y_i

Note that

$$E(Y_i) = E(\beta_0 + \beta_1 x_i + \epsilon_i) = \beta_0 + \beta_1 x_i + E(\epsilon_i) = \beta_0 + \beta_1 x_i,$$

and similarly

$$\text{var}(Y_i) = \text{var}(\beta_0 + \beta_1 x_i + \epsilon_i) = \text{var}(\epsilon_i) = \sigma^2.$$

Also, $\text{corr}(Y_i, Y_j) = 0$ for $i \neq j$.

These use results from A.3.
Consultant studies relationship between number of bids requested by construction contractors for lighting equipment over a week x_i (i denotes which week) and the time required to prepare the bids Y_i. Suppose we know

$$Y_i = 9.5 + 2.1x_i + \epsilon_i.$$

If we see $(x_3, Y_3) = (45, 108)$ then

$$\epsilon_3 = 108 - [9.5 + 2.1(45)] = 4.$$ See Fig. 1.6.
The mean time given x is $E(Y) = 9.5 + 2.1x$. When $x = 45$, our expected y-value is 104, but we will actually observe a value somewhere around 104.

What does 9.5 represent here? Is it sensible/interpretable?

How is 2.1 interpreted here?

In general, β_1 represents how the mean response changes when x is increased one unit.
Note the simple linear regression model can be written in matrix terms as

$$
\begin{bmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_n
\end{bmatrix} =
\begin{bmatrix}
1 & x_1 \\
1 & x_2 \\
\vdots & \vdots \\
1 & x_n
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1
\end{bmatrix} +
\begin{bmatrix}
\epsilon_1 \\
\epsilon_2 \\
\vdots \\
\epsilon_n
\end{bmatrix},
$$

or equivalently

$$
Y = X\beta + \epsilon,
$$

where

$$
\begin{aligned}
\begin{bmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_n
\end{bmatrix},
\begin{bmatrix}
1 & x_1 \\
1 & x_2 \\
\vdots & \vdots \\
1 & x_n
\end{bmatrix},
\begin{bmatrix}
\beta_0 \\
\beta_1
\end{bmatrix},
\begin{bmatrix}
\epsilon_1 \\
\epsilon_2 \\
\vdots \\
\epsilon_n
\end{bmatrix}.
\end{aligned}
$$

This will be useful later on.
Section 1.6: Estimation of \((\beta_0, \beta_1)\)

- \(\beta_0\) and \(\beta_1\) are unknown parameters to be estimated from the data: \((x_1, Y_1), (x_2, Y_2), \ldots, (x_n, Y_n)\).
- They completely determine the unknown mean at each value of \(x\):

 \[
 E(Y) = \beta_0 + \beta_1 x.
 \]

- Since we expect the various \(Y_i\) to be both above and below \(\beta_0 + \beta_1 x_i\) roughly the same amount \((E(\epsilon_i) = 0)\), a good-fitting line \(b_0 + b_1 x\) will go through the “heart” of the data points in a scatterplot.
- The method of least-squares formalizes this idea by minimizing the sum of the squared deviations of the observed \(y_i\) from the line \(b_0 + b_1 x_i\).
The sum of squared deviations about the line is
\[Q(\beta_0, \beta_1) = \sum_{i=1}^{n} [Y_i - (\beta_0 + \beta_1 x_i)]^2. \]

Least squares minimizes \(Q(\beta_0, \beta_1) \) over all \((\beta_0, \beta_1)\). Calculus shows that the least squares estimators are
\[
\begin{align*}
b_1 &= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \\
b_0 &= \bar{Y} - b_1 \bar{x}
\end{align*}
\]

Proof:

\[
\frac{\partial Q}{\partial \beta_1} = \sum_{i=1}^{n} 2(Y_i - \beta_0 - \beta_1 x_i)(-x_i) = -2 \left[\sum_{i=1}^{n} x_i Y_i - \beta_0 \sum_{i=1}^{n} x_i - \beta_1 \sum_{i=1}^{n} x_i^2 \right],
\]
\[
\frac{\partial Q}{\partial \beta_0} = \sum_{i=1}^{n} 2(Y_i - \beta_0 - \beta_1 x_i)(-1) = -2 \left[\sum_{i=1}^{n} Y_i - n \beta_0 - \beta_1 \sum_{i=1}^{n} x_i \right].
\]
Two equations in two unknowns

Setting these equal to zero, and dropping indexes on the summations, we have

\[
\begin{align*}
\sum x_i Y_i &= b_0 \sum x_i + b_1 \sum x_i^2 \\
\sum Y_i &= nb_0 + b_1 \sum x_i
\end{align*}
\]

\[
\Rightarrow \text{“normal” equations}
\]

Multiply the first by \(n\) and multiply the second by \(\sum x_i\) and subtract yielding

\[
n \sum x_i Y_i - \sum x_i \sum Y_i = b_1 \left[n \sum x_i^2 - \left(\sum x_i \right)^2 \right].
\]

Solving for \(b_1\) we get

\[
b_1 = \frac{n \sum x_i Y_i - \sum x_i \sum Y_i}{n \sum x_i^2 - \left(\sum x_i \right)^2} = \frac{\sum x_i Y_i - n \bar{Y} \bar{x}}{\sum x_i^2 - n \bar{x}^2}.
\]
The second normal equation immediately gives

\[b_0 = \bar{Y} - b_1 \bar{x}. \]

Our solution for \(b_1 \) is correct but not as aesthetically pleasing as the purported solution

\[b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}. \]

Show

\[\sum (x_i - \bar{x})(Y_i - \bar{Y}) = \sum x_i Y_i - n \bar{Y} \bar{x} \]
\[\sum (x_i - \bar{x})^2 = \sum x_i^2 - n \bar{x}^2 \]
Properties of least squares estimators

The line $\hat{Y} = b_0 + b_1 x$ is called the least squares estimated regression line. Why are the least squares estimates (b_0, b_1) “good?”

- They are unbiased: $E(b_0) = \beta_0$ and $E(b_1) = \beta_1$.
- Among all linear unbiased estimators, they have the smallest variance. They are best linear unbiased estimators, BLUEs.

We will show the first property next. The second property is formally called the “Gauss-Markov” theorem (1.11) and is proved in linear models (page 18).
2.1 and 2.2: Unbiasedness

b₀ and b₁ are unbiased (Section 2.1, p. 42) Recall that least-squares estimators \((b₀, b₁)\) are given by:

\[
b₁ = \frac{n \sum x_i Y_i - \sum x_i \sum Y_i}{n \sum x_i^2 - (\sum x_i)^2} = \frac{\sum x_i Y_i - n \bar{Y} \bar{x}}{\sum x_i^2 - n \bar{x}^2},
\]

and

\[
b₀ = \bar{Y} - b₁ \bar{x}.
\]

Note that the numerator of \(b₁\) can be written

\[
\sum x_i Y_i - n \bar{Y} \bar{x} = \sum x_i Y_i - \bar{x} \sum Y_i = \sum (x_i - \bar{x}) Y_i.
\]
Then the expectation of \(b_1 \)'s numerator is

\[
E \left\{ \sum (x_i - \bar{x}) Y_i \right\} = \sum (x_i - \bar{x}) E(Y_i)
\]
\[
= \sum (x_i - \bar{x})(\beta_0 + \beta_1 x_i)
\]
\[
= \beta_0 \sum x_i - n\bar{x}\beta_0 + \beta_1 \sum x_i^2 - n\bar{x}^2 \beta_1
\]
\[
= \beta_1 \left(\sum x_i^2 - n\bar{x}^2 \right)
\]

Finally,

\[
E(b_1) = \frac{E \left\{ \sum (x_i - \bar{x}) Y_i \right\}}{\sum x_i^2 - n\bar{x}^2}
\]
\[
= \frac{\beta_1 \left(\sum x_i^2 - n\bar{x}^2 \right)}{\sum x_i^2 - n\bar{x}^2}
\]
\[
= \beta_1.
\]
Also,

\[
E(b_0) = E(\bar{Y} - b_1 \bar{x})
\]
\[
= \frac{1}{n} \sum E(Y_i) - E(b_1) \bar{x}
\]
\[
= \frac{1}{n} \sum \left[\beta_0 + \beta_1 x_i \right] - \beta_1 \bar{x}
\]
\[
= \frac{1}{n} \left[n \beta_0 + n \beta_1 \bar{x} \right] - \beta_1 \bar{x}
\]
\[
= \beta_0.
\]

As promised, \(b_1 \) is unbiased for \(\beta_1 \) and \(b_0 \) is unbiased for \(\beta_0 \).
- **proc reg** and **proc glm** fit regression models.
- Both include a **model statement** that tells SAS what the explanatory variable(s) are (on the right of `=` separated by spaces) and the response (on the left).

```sas
data whale;
  input liver tooth @@;
  label liver="Liver Se (mcg/g)"; label tooth="Tooth Se (ng/g)";
  datalines;
  6.23 140.16 6.79 133.32 7.92 135.34 8.02 127.82 9.34 108.67 10.00 146.22 10.57 131.18 11.04 145.51 12.36 163.24 14.53 136.55 15.28 112.63 18.68 245.07 22.08 140.48 27.55 177.93 32.83 160.73 36.04 227.60 37.74 177.69 40.00 174.23 41.23 206.30 45.47 141.31
;
proc reg;
  model liver=tooth;
```
Whale Selenium, SAS output

The REG Procedure
Model: MODEL1
Dependent Variable: liver Liver Se (mcg/g)

Number of Observations Read 20
Number of Observations Used 20

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>992.10974</td>
<td>992.10974</td>
<td>7.31</td>
<td>0.0146</td>
</tr>
<tr>
<td>Error</td>
<td>18</td>
<td>2444.58376</td>
<td>135.81021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>19</td>
<td>3436.69350</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 11.65376
R-Square 0.2887
Dependent Mean 20.68500
Adj R-Sq 0.2492
Coef Var 56.33920

Parameter Estimates

| Variable | Label | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|------------|-------------|----|--------------------|----------------|---------|------|-----|
| Intercept | Intercept | 1 | -10.69641 | 11.89954 | -0.90 | 0.3806|
| tooth | Tooth Se (ng/g) | 1 | 0.20039 | 0.07414 | 2.70 | 0.0146|

From this, $b_0 = -10.69$, $b_1 = 0.2004$, and $\hat{\sigma} = 11.65$. Interpretation of each?