CHAPTER 2

2.2 Sample spaces

TERMINOLOGY: Suppose that a random experiment is performed and that we observe an outcome from the experiment (e.g., rolling a die). The set of all possible outcomes for an experiment is called the sample space and is denoted by S.

Example 2.2. In each of the following random experiments, we write out a corresponding sample space.

(a) The Michigan state lottery calls for a three-digit integer to be selected:

$$S = \{000, 001, 002, \ldots, 998, 999\}.$$

(b) A USC student is tested for chlamydia (0 = negative, 1 = positive):

$$S = \{0, 1\}.$$

(c) An industrial experiment consists of observing the lifetime of a battery, measured in hours. Different sample spaces are:

$$S_1 = \{w : w \geq 0\} \quad S_2 = \{0, 1, 2, 3, \ldots\} \quad S_3 = \{\text{defective, not defective}\}.$$

Sample spaces are not unique; in fact, how we describe the sample space has a direct influence on how we assign probabilities to outcomes in this space. \Box

2.3 Basic set theory

TERMINOLOGY: A countable set A is a set whose elements can be put into a one-to-one correspondence with $\mathbb{N} = \{1, 2, 3, \ldots\}$, the set of natural numbers. A set that is not countable is said to be uncountable.

TERMINOLOGY: Countable sets can be further divided up into two types.

- A **countably infinite set** has an infinite number of elements.
- A **countably finite set** has a finite number of elements.
Example 2.3. Say whether the following sets are countable (and, furthermore, finite or infinite) or uncountable.

(a) \(A = \{0, 1, 2, \ldots, 10\} \) **countable**.

(b) \(B = \{1, 2, 3, \ldots\} \) **countably infinite**.

(c) \(C = \{x : 0 < x < 2\} \) **interval** uncountable.

TERMINOLOGY: Suppose that \(A \) and \(B \) are sets (events). We say that \(A \) is a **subset** of \(B \) if every outcome in \(A \) is also in \(B \), written \(A \subseteq B \). (\(A \subseteq B \))

- **Implication:** In a random experiment, if the event \(A \) occurs, then so does \(B \). The converse is not necessarily true.

TERMINOLOGY: The **null set** denoted by \(\emptyset \) is the set that contains no elements.

TERMINOLOGY: The **union** of two sets \(A \) and \(B \) is the set of all elements in either \(A \) or \(B \) (or both), written \(A \cup B \). The **intersection** of two sets \(A \) and \(B \) is the set of all elements in both \(A \) and \(B \), written \(A \cap B \). Note that \(A \cap B \subseteq A \cup B \).

- **Remember:** Union \(\rightarrow \) "or" Intersection \(\rightarrow \) "and"

EXTENSION: We extend the notion of unions and intersections to more than two sets.

Suppose that \(A_1, A_2, \ldots, A_n \) is a **finite** sequence of sets. The union of \(A_1, A_2, \ldots, A_n \) is

\[
\bigcup_{j=1}^{n} A_j = A_1 \cup A_2 \cup \cdots \cup A_n,
\]

that is, the set of all elements contained in at least one \(A_j \). The intersection of \(A_1, A_2, \ldots, A_n \) is

\[
\bigcap_{j=1}^{n} A_j = A_1 \cap A_2 \cap \cdots \cap A_n,
\]

the set of all elements contained in each of the sets \(A_j, j = 1, 2, \ldots, n \).
EXTENSION: Suppose that \(A_1, A_2, \ldots \) is a countable sequence of sets. The union and intersection of this infinite collection of sets is denoted by

\[
\bigcup_{j=1}^{\infty} A_j \quad \text{and} \quad \bigcap_{j=1}^{\infty} A_j,
\]

respectively. The interpretation is the same as before.

Example 2.4. Define the sequence of sets \(A_j = [1 - 1/j, 1 + 1/j] \), for \(j = 1, 2, \ldots \). Then,

\[
\bigcup_{j=1}^{\infty} A_j = [0, 2] \quad \text{and} \quad \bigcap_{j=1}^{\infty} A_j = \{1\}. \quad \square
\]

TERMINOLOGY: Suppose that \(A \) is a subset of \(S \) (the sample space). The complement of \(A \) is the set of all elements not in \(A \) (but still in \(S \)). We denote the complement by \(\overline{A} \).

Distributive Laws:

1. \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)
2. \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)

DeMorgan’s Laws:

1. \(\overline{A \cap B} = \overline{A} \cup \overline{B} \)
2. \(\overline{A \cup B} = \overline{A} \cap \overline{B} \)

TERMINOLOGY: We call two events \(A \) and \(B \) mutually exclusive, or disjoint, if \(A \cap B = \emptyset \), that is, \(A \) and \(B \) have no common elements.

Example 2.5. Suppose that a fair die is rolled. A sample space for this random experiment is \(S = \{1, 2, 3, 4, 5, 6\} \).

(a) If \(A = \{1, 2, 3\} \), then \(\overline{A} = \{4, 5, 6\} \).

(b) If \(A = \{1, 2, 3\} \), \(B = \{4, 5\} \), and \(C = \{2, 3, 6\} \), then \(A \cap B = \emptyset \) and \(B \cap C = \emptyset \). Note also that \(A \cap B \cap C = \emptyset \) and \(A \cup B \cup C = S \). \quad \square

Moreover, we have:

\[
\bigcap_{j=1}^{\infty} A_j = \{1\}.
\]

Obviously, \(1 \) is in \(\bigcap_{j=1}^{\infty} A_j \).

If \(x \notin A_1 \), \(x \notin A_j \) for all \(j \).

Then, for all \(j \),

\[
x \text{ is in } A_j = \left[1 - \frac{1}{j}, 1 + \frac{1}{j}\right] \quad \text{such that } \frac{1}{j} < |x - 1|.
\]

Take \(j \) large enough such that \(\frac{1}{j} < |x - 1| \), then \(x > 1 + \frac{1}{j} \) or \(x < 1 - \frac{1}{j} \).

i.e. \(x \) is not in \(A_j \)

Contradiction:

So \(\bigcap_{j=1}^{\infty} A_j \) can only be 1.