
Test 3 Example Code
library(tidyverse)
library(mdsr)

install.packages("nycflights13")
library(nycflights13)

Install and load package 'sqldf':
#install.packages("sqldf")
library(sqldf)

data(flights) # load the 'flights' table into the workspace
sqldf("select * from flights limit 0,10")

Let's rename 'name' to 'airport_name' using AS:

sqldf("SELECT
name AS airport_name,
CONCAT('(', lat, ', ', lon, ')') AS coords
FROM airports
LIMIT 0, 6")

Using the WHERE clause to pick only the rows that meet some condition (changed the
condition from the book example):

sqldf("SELECT
year, month, day, origin, dest,
flight, carrier
FROM flights
WHERE year = 2013 AND month = 6 AND day = 26
AND origin = 'LGA'
LIMIT 0, 6")

Note the difference between the BETWEEN and IN operators used in logical
conditions:

sqldf("
SELECT
DISTINCT CONCAT(year, '-', month, '-', day)
AS theDate
FROM flights
WHERE year = 2013 AND month = 6 AND day BETWEEN 26 and 30
AND origin = 'LGA'
LIMIT 0, 6
")

sqldf("
SELECT
DISTINCT CONCAT(year, '-', month, '-', day)
AS theDate
FROM flights
WHERE year = 2013 AND month = 6 AND day IN (26, 30)
AND origin = 'LGA'

LIMIT 0, 6
")

loading packages:
library(mdsr)
library(DBI)
db <- dbConnect_scidb("airlines")

Use of GROUP BY to get counts by carrier:

sqldf("
SELECT
carrier,
COUNT(*) AS numFlights,
SUM(1) AS numFlightsAlso
FROM flights
WHERE year = 2013 AND month = 6 AND day = 26
AND origin = 'LGA'
GROUP BY carrier;
")

sqldf("
SELECT
carrier,
COUNT(*) AS numFlights,
MIN(dep_time)
FROM flights
WHERE year = 2013 AND month = 6 AND day = 26
 AND origin = 'LGA'
GROUP BY carrier;
")

This shows the worst arrival delay, by airline, for 6/26/2013:
sqldf("
 SELECT
 carrier,
 COUNT(*) AS numFlights,
 MAX(arr_delay) AS WorstDelay
FROM flights
WHERE year = 2013 AND month = 6 AND day = 26
AND origin = 'LGA'
GROUP BY carrier
LIMIT 0, 6;
")

Ordering the result with ORDER BY:
sqldf("
SELECT
dest, SUM(1) AS numFlights
FROM flights

WHERE year = 2013
AND origin = 'LGA'
GROUP BY dest
ORDER BY numFlights DESC
LIMIT 0, 10;
")

Can also use ORDER BY without GROUP BY (this will print the results alphabetically
by airport_name):
Note it also works even though 'airport_name' is an alias we created:

sqldf("SELECT
name AS airport_name,
CONCAT('(', lat, ', ', lon, ')') AS coords
FROM airports
ORDER BY airport_name
LIMIT 0, 6")

One more example of ORDER BY without GROUP BY (this lists results in reverse
alphabetical order by carrier):

sqldf("SELECT
year, month, day, origin, dest,
flight, carrier
FROM flights
WHERE year = 2013 AND month = 6 AND day = 26
AND origin = 'LGA'
ORDER BY carrier DESC
LIMIT 0, 16")

Which destinations have the lowest average delay for 2013 flights from LaGuardia?

sqldf("
SELECT
dest, SUM(1) AS numFlights,
AVG(arr_delay) AS avg_arr_delay
FROM flights
WHERE year = 2013
AND origin = 'LGA'
GROUP BY dest
ORDER BY avg_arr_delay ASC
LIMIT 0, 6;
")

Restricting the result set with HAVING:
Among all destinations with at least 730 flights in 2013 (at least 2 flights per
day),
which destinations have the lowest average delay for 2013 flights from LaGuardia?

sqldf("
SELECT
dest, SUM(1) AS numFlights,
AVG(arr_delay) AS avg_arr_delay

FROM flights
WHERE year = 2013
AND origin = 'LGA'
GROUP BY dest
HAVING numFlights > 365 * 2
ORDER BY avg_arr_delay ASC
LIMIT 0, 6;
")

Note this HAVING clause works even though it's based on a derived column alias
(only true for some SQL implementations)

Examples showing the usage of LIMIT:

sqldf("
SELECT
dest, SUM(1) AS numFlights,
AVG(arr_delay) AS avg_arr_delay
FROM flights
WHERE year = 2013
AND origin = 'LGA'
GROUP BY dest
HAVING numFlights > 365 * 2
ORDER BY avg_arr_delay ASC
LIMIT 0, 6;
")

sqldf("
SELECT
dest, SUM(1) AS numFlights,
AVG(arr_delay) AS avg_arr_delay
FROM flights
WHERE year = 2013
AND origin = 'LGA'
GROUP BY dest
HAVING numFlights > 365 * 2
ORDER BY avg_arr_delay ASC
LIMIT 5, 10;
")

Examples of Joins in SQL:

The 'airports' table has the FAA code and also the full airport name.
If we join these tables together, we can get the full airport name for the
destinations, along with the information on the flights.

Note the JOIN does an INNER JOIN.

sqldf("
SELECT
origin, dest,
airports.name AS dest_name,
flight, carrier

FROM flights
JOIN airports ON flights.dest = airports.faa
WHERE year = 2013 AND month = 6 AND day = 26
AND origin = 'LGA'
LIMIT 0, 6;
")

Using table aliases:
Making 'o' the alias for 'flights', and making 'a' the alias for 'airports':

sqldf("
SELECT
origin, dest,
a.name AS dest_name,
flight, carrier
FROM flights AS o
JOIN airports AS a ON o.dest = a.faa
WHERE year = 2013 AND month = 6 AND day = 26
AND origin = 'LGA'
LIMIT 0, 6;
")

A LEFT JOIN:
This will capture any destination airports in the 'flights' table whose airport
information is not available in the 'airports' table

sqldf("
SELECT
year, month, day, origin, dest,
a.name AS dest_name,
flight, carrier
FROM flights AS o
LEFT JOIN airports AS a ON o.dest = a.faa
WHERE year = 2013 AND month = 6 AND day = 26
AND a.name is null
LIMIT 0, 6;
")
Note the destinations returned that don't have a match in the 'airports' table are
all in Puerto Rico...

Some simple examples related the Chapter 16 concepts:

Reading in a .csv file from an external location and creating a data frame
'BP_full':

BP_full <- readr::read_csv(file="https://people.stat.sc.edu/hitchcock/Table6_8.csv")

Creating a connection to a database driver:

con <- dbConnect(RSQLite::SQLite(), ":memory:")

Here, ":memory:" is a special path that creates an in-memory database.

Other database drivers require more details about the host, user, etc.

Writing the data frame to a table in the database:
dbWriteTable(con, "presBP", BP_full)

reading (and printing) the table:
dbReadTable(con, "presBP")

Creating another table that is an exact copy of the 'presBP' table
before we start updating 'presBP'

dbExecute(con, "CREATE TABLE presBPcopy AS SELECT * FROM presBP")
dbReadTable(con, "presBPcopy")

Now doing some updates and alterations on the original 'presBP' table:

Inserting a new row into the table:

dbSendQuery(conn = con,
 "INSERT INTO presBP
 VALUES ('DJT', 'before', 120, 60, '1/15/2016')")

dbReadTable(con, "presBP")

Doing individual updates on the table:

dbSendQuery(conn = con,
 "UPDATE presBP
 SET sbp= 122
 WHERE subject='DJT' ")

dbReadTable(con, "presBP")

dbSendQuery(conn = con,
 "UPDATE presBP
 SET sbp= 123, dbp=62
 WHERE subject='DJT' ")

dbReadTable(con, "presBP")

Adding a column to the table and filling in values:

#dbGetQuery(con, "ALTER TABLE presBP ADD COLUMN party TEXT") # Gives warning, better
to use 'dbExecute':

dbExecute(con, "ALTER TABLE presBP ADD COLUMN party TEXT")

dbGetQuery(con, "SELECT * FROM presBP")

dbSendQuery(conn = con,
 "UPDATE presBP
 SET party='Rep'
 WHERE subject='DJT' OR subject='GWB' ")

dbSendQuery(conn = con,
 "UPDATE presBP
 SET party='Dem'
 WHERE subject!='DJT' AND subject!='GWB' ")

dbGetQuery(con, "SELECT * FROM presBP")

Example R code, Chapter 19, Part 1

loading packages
library(tidyverse)
library(mdsr)

URL of text file of Macbeth from Gutenberg Project:
macbeth_url <- "http://www.gutenberg.org/cache/epub/1129/pg1129.txt"

getting the text from the URL into an R object
Macbeth_raw <- RCurl::getURL(macbeth_url)

loading the 'Macbeth_raw' data frame, which is actually part of the 'mdsr' package:
data(Macbeth_raw)

length(Macbeth_raw)

nchar(Macbeth_raw)

'Macbeth_raw' is actually just one VERY long character string

str_split will split the long character string into a vector of many character
strings
We split at the end-of-line characters \r and \n

str_split returns a list: we only want the first element
macbeth <- Macbeth_raw %>%
 str_split("\r\n") %>%
 pluck(1) # plucks the first element from the list

length(macbeth)

head(macbeth) # the first few strings are the publisher's notes...

picking some consecutive strings from inside the document:
macbeth[300:310]

Finding the lines where the character MACBETH speaks
by looking for the subset of strings with " MACBETH" in them.
The 'str_subset' function does this:

macbeth_lines <- macbeth %>%
 str_subset(" MACBETH")
length(macbeth_lines)

head(macbeth_lines)

Finding the lines where the character MACDUFF speaks
by looking for the subset of strings with " MACDUFF" in them.

macbeth %>%
 str_subset(" MACDUFF") %>%
 length()

str_subset returns the subset of the elements containing the specified string:
macbeth %>%
 str_subset(" MACBETH") %>%
 length()

str_detect returns a vector (having the same length as the whole large object)
containing
TRUEs and FALSEs elementwise, depending on whether each element contains the
specified string:
macbeth %>%
 str_detect(" MACBETH") %>%
 length()

We see the first 6 lines of 'macbeth' do NOT contain the string " MACBETH":
macbeth %>%
 str_detect(" MACBETH") %>%
 head()

To find the indices of the elements where " MACBETH" *does* appear, use str_which:
macbeth %>%
 str_which(" MACBETH")

'str_extract' from the 'stringr' package returns the actual matching piece from
each selected element
having that specified pattern:
pattern <- " MACBETH"
macbeth %>%
 str_subset(pattern) %>%
 str_extract(pattern) %>%
 head()

The '.' metacharacter matches any character, so searching for "MAC." will return
strings that start with 'MAC'.
This includes MACBETH and MACDUFF, but also some unrelated words ...
macbeth %>%
 str_subset("MAC.") %>%
 head(12)

To actually search for a period (.) character, you must precede the period with two
backslashes:
macbeth %>%
 str_subset("MACBETH\\.") %>%

 head()

The [B-Z] stands for any character between B and Z:
macbeth %>%
 str_subset("MAC[B-Z]") %>%
 head()

Using [D-Z] will exclude MACBETH from the search results:
macbeth %>%
 str_subset("MAC[D-Z]") %>%
 head()

The (B|D) represents EITHER the B or D characters, so this will find MACBETH or
MACDUFF
macbeth %>%
 str_subset("MAC(B|D)") %>%
 head()

The ^ searches only for the specified string when it appears at the beginning of
the line of text.
Note the difference here:

macbeth %>%
 str_subset("^ MAC[B-Z]") %>%
 head()

macbeth %>%
 str_subset(" MAC[B-Z]") %>%
 head()

The $ searches only for the specified string when it appears at the end of the line
of text.
Note the difference here:

macbeth %>%
 str_subset("MACBETH$") %>%
 head()

macbeth %>%
 str_subset("MACBETH") %>%
 head()

The ? searches for instances where the previous element in the pattern (here, a
space) is repeated 0 times or 1 time.
The * searches for instances where the previous element in the pattern (here, a
space) is repeated 0 or more times.
The + searches for instances where the previous element in the pattern (here, a
space) is repeated 1 or more times.

macbeth %>%

 str_subset("^ ?MAC[B-Z]") %>%
 head()
macbeth %>%
 str_subset("^ *MAC[B-Z]") %>%
 head()
macbeth %>%
 str_subset("^ +MAC[B-Z]") %>%
 head()

Note that all these searches are case-sensitive!
See the difference in these three results:

macbeth %>%
 str_subset("MACBETH") %>%
 head()

macbeth %>%
 str_subset("Macbeth") %>%
 head()

macbeth %>%
 str_subset("macbeth") %>%
 head()

TEXT ANALYSIS OF ARTICLE BY Prof. Hitchcock

Importing the article from a text file on the web:

DBH_url <- "https://people.stat.sc.edu/hitchcock/HistoryStatisticsCourseTASrev.txt"

DBH_raw <- RCurl::getURL(DBH_url)

length(DBH_raw)

nchar(DBH_raw)

str_split returns a list: we only want the first element
dbh <- DBH_raw %>%
 str_split("\r\n") %>%
 pluck(1) # plucks the first element from the list

length(dbh)

head(dbh,25)

This uses some tools we've mentioned to create a tibble with information about on
which line each section of the article begins...
sections <- tibble(
 line = str_which(dbh, "^[1-9] +"),

 line_text = str_subset(dbh, "^[1-9] +"),
 labels = str_extract(line_text, "^[1-9] +")
)

install.packages("tidytext")
library(tidytext)

d <- tibble(txt = dbh)
d
d %>%
 unnest_tokens(output = word, input = txt)

d_clean <- d %>%
 unnest_tokens(output = word, input = txt) %>%
 anti_join(get_stopwords(), by = "word")

Default word cloud:

wordcloud(d_clean$word)

Formatted word cloud:

 wordcloud(d_clean$word,
 max.words = 40,
 scale = c(5, 1),
 colors = topo.colors(n = 30),
 random.color = TRUE
)

Bigrams and N-grams:

4-grams:

Finding all the 4-grams in the article:
dbh_4grams <- d %>%
 unnest_tokens(output = dbh_4gram, input = txt, token = "ngrams",
 n = 4) %>%
 select(dbh_4gram) # only selecting two of the columns
dbh_4grams

How many times each 4-gram appears, sorted from most to least:
dbh_4grams %>%
 count(dbh_4gram, sort = TRUE)

Most common words in the whole article:

d_clean %>%
 count(word) %>%
 arrange(desc(n)) %>%
 head()

Don’t need to worry about Chapter 17 R code for the free-response coding problem!

