
STAT 509 – Section 3.6:  Sampling Distributions 

 

Definition:  Parameter = a number that characterizes a 

population (example: population mean ) – it’s typically 

unknown. 

 

Statistic = a number that characterizes a sample 

(example: sample mean Y  ) – we can calculate it from 

our sample data. 

 

Y  =  

 

We use the sample mean Y   to estimate the population 

mean . 

Suppose we take a sample and calculate Y  .   

Will Y   equal ?            Will Y   be close to ? 

Suppose we take another sample and get another Y  . 

Will it be same as first Y  ?   Will it be close to first Y  ? 

 

• What if we took many repeated samples (of the same 

size) from the same population, and each time, 

calculated the sample mean? 

What would that set of  Y   values look like? 

 

The sampling distribution of a statistic is the 

distribution of values of the statistic in all possible 

samples (of the same size) from the same population. 

 



Consider the sampling distribution of the sample mean 

Y  when we take samples of size n from a population 

with mean  and variance 2
. 

 

Picture: 

 

 

 

 

 

The sampling distribution of  Y   has mean  and 

standard deviation n/ . 

 

Notation: 

 

 

 

 

Central Limit Theorem 

 

We have determined the center and the spread of the 

sampling distribution of Y  .  What is the shape of its 

sampling distribution?   

 

Case I:  If the distribution of the original data is normal, 

the sampling distribution of Y   is normal.  (This is true 

no matter what the sample size is.) 

 



Case II:  Central Limit Theorem:  If we take a random 

sample (of size n) from any population with mean  and 

standard deviation , the sampling distribution of Y   is 

approximately normal, if the sample size is large. 

 

 

 

 

 

How large does n have to be? 

One rule of thumb:  If n ≥ 30, we can apply the CLT 

result. 

 

Depends on the shape of the population distribution: 

 

• If the data come from a distribution that is nearly 

normal, sample size need not be very large to invoke 

CLT. 

• If the data come from a distribution that is far from 

normal, sample size must be very large to invoke CLT. 

 

Pictures: 

 

 

 

 

As n gets larger, the closer the sampling distribution 

looks to a normal distribution. 

 



• Checking how close data are to being normally 

distributed can be done via normal probability plots. 

 

• Normal probability (Q-Q) plots plot the ordered data 

values against corresponding N(0,1) quantiles: 

 

Ordered data: Y(1), Y(2), …, Y(n) 

Normal Quantiles:  z-values with area P(i) to their left, 

for i=1,…,n, 

where  P(i) = (i – 0.5) / n 

 

• In practice this is always plotted on a computer. 

 

R code:   
> qqnorm(mydata) 

 

 

• If the plotted points fall in roughly a straight line, the 

assumption that the data are nearly normally 

distributed is reasonable. 

 

• If the plotted points form a curve or an S-shape, then 

the data are not close to normal, and we need quite a 

large sample size to apply the CLT. 

 

• Similar types of Q-Q plot can be used to check 

whether data may come from other specific 

distributions. 

 

 

 



Why is the CLT important?  Because when Y   is 

(approximately) normally distributed, we can answer 

probability questions about the sample mean. 

Standardizing values of Y  : 

If Y  is normal with mean  and standard deviation 

n/ , then  

n

Y
Z

/


  

has a standard normal distribution. 

 

Example:  The time between adjacent accidents in an 

industrial plant follows an exponential distribution with 

an average of 700 days.  What is the probability that the 

average time between 49 pairs of adjacent accidents will 

be greater than 900 days? 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



Other Sampling Distributions 

 

In practice, the population standard deviation  is 

typically unknown. 

 

We estimate  with the sample standard deviation s, 

where the sample variance 1
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But the quantity 
ns

Y

/


 does not have a standard 

normal distribution. 

 

Its sampling distribution is as follows: 

• If the data come from a normal population, then the 

statistic 
ns

Y
T

/


  has a t-distribution (“Student’s t”) 

with n – 1 degrees of freedom (the parameter of the  

t-distribution). 

 

• The t-distribution resembles the standard normal 

(symmetric, mound-shaped, centered at zero) but it is 

more spread out. 

• The fewer the degrees of freedom, the more spread out 

the t-distribution is. 

• As the d.f. increase, the t-distribution gets closer to the 

standard normal. 

 



Picture: 

 

 

 

 

 

 

Table 2 gives values of the t-distribution with specific 

areas to the left of these values. 

 

Example:  The nominal power produced by a student-

designed internal combustion engine is 100 hp. The 

student team that designed the engine conducted 10 

tests to determine the actual power. The data were: 
97.9 100.8 102.0  97.0 100.8  97.9 100.1  

91.9  98.1  99.9 

 

Note for these data, n = 10, Y  = 98.64, s = 2.864. 

 

Assuming the data came from a normal distribution, 

what is the probability of getting a sample mean of 

98.64 hp or less if the true mean is actually 100 hp? 

 

 

 

 

 

 

 

 

 



Picture: 

 

 

 

 

 

R code:  
> pt(-1.502, df=9) 

[1] 0.08367136 

 

Is the normality assumption reasonable? 
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The 2
 (Chi-square) Distribution 

 

Suppose our sample (of size n) comes from a normal 

population with mean  and standard deviation . 

 

Then 2

2)1(



sn 
 has a 2

 distribution with n – 1 degrees of 

freedom. 

 

• The 2
 distribution takes on positive values. 

• It is skewed to the right. 

• It is less skewed for higher degrees of freedom. 

• The mean of a 2
 distribution with n – 1 degrees of 

freedom is n – 1 and the variance is 2(n – 1). 

 

Fact:  If we add the squares of n independent standard 

normal r.v.’s, the resulting sum has a 2
n distribution. 

Note that 2

2)1(
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sn 
 = 

 

 

 

 

 

 

 

 

 

We sacrifice 1 d.f. by estimating  with Y  , so it is 2
n-1. 



Table 3 gives values of a 2
 r.v. with specific areas to the 

left of those values. 

 

 

 

 

 

 

 

 

 

Examples: 

 

For 2
 with 6 d.f., area to the left of __________ is .10. 

 

 

For 2
 with 6 d.f., area to the left of __________ is .95. 

 

 

For 2
 with 20 d.f., area to the left of _________ is .90. 

 

 

 

 

 

 

 

 

 

 

 



The F Distribution 
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 where the two 2
 r.v.’s are 

independent, has an F-distribution with n1 – 1 

“numerator degrees of freedom” and n2 – 1 

denominator degrees of freedom. 

 

So, if we have independent samples (of sizes n1 and n2) 

from two normal populations, note: 

 

 

 

 

 

 

has an F-distribution with (n1 – 1, n2 – 1) d.f. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 (p. 580) gives values of F r.v. with area .10 to the right.  

Table 4 (p. 582) gives values of F r.v. with area .05 to the right.  

Table 4 (p. 584) gives values of F r.v. with area .01 to the right.  

 

 

Verify: 

 

For F with (3, 9) d.f., 2.81 has area 0.10 to right. 

 

For F with (15, 13) d.f., 3.82 has area 0.01 to right. 

 

 

• These sampling distributions will be important in 

many inferential procedures we will learn. 

 


