STAT 509 — Section 7.3: More Experimental Design

e Unless k is quite small, full 2 factorial experiments
require many experimental runs.

 Fractional factorial experiments are designed to
reduce the required number of runs while maintaining
the factorial structure and the ability to examine main
effects and interaction effects of interest.

 Fractional factorials do this by reducing the number
of treatment combinations examined, and thus forgoing
the ability to estimate “higher-order” interactions.

e In most experiments, the high-order interactions
(interactions among several factors) are not as
Important as the main effects and low-order (such as
two-factor) interactions.

Example: Half Fraction of a 2° Design

o A full 2° factional experiment requires (even in the
case of no replication) experimental runs.

e In situations where experimental runs are time-
consuming or costly, we may wish to obtain good
conclusions with fewer than 2" runs.



Table of Contrasts for a Full 22 Factorial Design

x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3
-1 -1 -1 1 1 1 -1
1 -1 -1 -1 -1 1 1
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o Suppose we remove all the rows in which the column
x1x2x3 has -1. This leaves us with:

x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3
1 -1 -1 -1 -1 1 1

-1 1 -1

-1 -1 1 1 -1 -1
1 1 1 1 1 1
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» Advantage: We are down to four rows, meaning we
need only four experimental runs.

» Disadvantage: The column for I and the column for
x1x2x3 are exactly the same. This implies we cannot
estimate both the intercept and the three-factor
interaction effect.

* We say the three-factor interaction, ABC, is aliased
with the intercept.



e |n addition: The columns for and for
are exactly the same.

* So the main effect for factor A is aliased with the two-
factor interaction BC.

e Similarly, the main effect for factor B is aliased with
the two-factor interaction

* And the main effect for factor C is aliased with the
two-factor interaction

* So in this half-fraction design, we cannot distinguish
the main effect of any one factor from the interaction
effect of the other two factors.

* Only solution? Use a model that assumes the
Interactions are unimportant:

Linear Model for the 2°* Factorial Design

Yi=Bo + PiXis + PoXiz + PsXis + €

The notation “2°* Factorial” indicates there are 2 levels
for each factor: there are 3 factors, and it is a half
fraction.

« The total number of treatment combinations is 2°* =



e If the interactions are indeed unimportant, this model
is fine.

o If we use this half-fraction model and we do have
Important interactions, we can make false conclusions:
We might mistakenly conclude a main effect is
significant when it actually is not.

* In this example, ABC is called the defining interaction
because we picked a specific level for x1x2x3 to select
which treatment combinations to run.

Determining the Alias Structure

» We can quickly determine which factors are aliased in
the following way:

» The highest-order interaction is the defining
interaction and is equated to the intercept, 1.

* We add each effect to the defining interaction using
modulo 2 arithmetic (where 1 + 1 =0).

e For example, in the 2°* design:



A Real Data Example with Four Factors

e Table 7.44 gives the experimental results from a
fractional factorial with a response variable Y = free
height of a leaf spring, and 4 factors related to the
heating process:

— High-heat temp. (x;): 1840, 1880

— Heating time (X;): 23, 25

— Transfer time (x3): 10, 12

— Hold-down time (x4): 2, 3

Determining the Alias Structure for a 2** Design here:




R code:

> leaf.data <- read.table(file =
"http://www.stat.sc.edu/~hitchcock/leafspringdata. txt",
header=T)

> attach(leaf.data)

> summary (Im(y ~ x1 * x2 * x3 * x4))

> qgnorm(coef (Im(y ~ x1 * x2 * x3 * x4))[-1],datax=T)

Normal Q-Q Plot

1.0

05

Theoretical Quantiles
0.0

-05

-1.0

-0.02 0.00 0.02 0.04 0.06 0.08 0.10

Sample Quantiles

* Based on the magnitudes of the estimated coefficients
and the normal Q-Q plot of the estimated coefficients,
which effects appear to be significant?



Final Comments on Experimental Design

» Some experimenters use a “one-factor-at-a-time”
(OFAAT) approach to designing experiments.

 This consists of an initial run in which all factors are
set to the same level (say, “low”) and subsequent runs in
which one factor at a time is changed from low to high:

 This approach has serious disadvantages compared to
factorial (or fractional factorial) designs:

(1) The OFAAT approach cannot estimate interactions.
(2) The OFAAT approach does not examine the entire
experimental region of treatment combinations.

(3) The effect estimates resulting from a OFAAT
approach are not as precise as the estimates from a
factorial (or fractional factorial) design.

* Other experimenters use a “shotgun” approach to
design, in which they select treatment combinations
randomly over the experimental region.

 This approach is also not preferred, since it tends to
waste resources, miss important parts of the
experimental region, and/or produce less precise
estimates of effects.



