- We typically assume the random errors balance out they average zero.
- Then this is equivalent to assuming the mean of Y, denoted E(Y), equals the deterministic component.

Straight-Line Regression Model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Y = response variable (dependent variable)
X = predictor variable (independent variable)
ε = random error component

 $\beta_0 = Y$ -intercept of regression line $\beta_1 = slope of regression line$

Note that the deterministic component of this model is $E(Y) = \beta_0 + \beta_1 X$

Typically, in practice, β_0 and β_1 are unknown parameters. We estimate them using the sample data.

Response Variable (Y): Measures the major outcome of interest in the study.

<u>Predictor Variable (X):</u> Another variable whose value explains, predicts, or is associated with the value of the response variable.

Fitting the Model (Least Squares Method)

If we gather data (X, Y) for several individuals, we can use these data to estimate β_0 and β_1 and thus estimate the linear relationship between Y and X.

First step: Decide if a straight-line relationship between Y and X makes sense.

Plot the bivariate data using a scattergram (scatterplot).

Once we settle on the "best-fitting" regression line, its equation gives a predicted Y-value for any new X-value.

How do we decide, given a data set, which line is the best-fitting line?