Correlation

The scatterplot gives us a general idea about whether
there is a linear relationship between two variables.

More precise: The coefficient of correlation (denoted r)
is a numerical measure of the strength and direction of
the linear relationship between two variables.

Formula for r (the correlation coefficient between two
variables X and Y):
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Most computer packages will also calculate the
correlation coefficient.
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Interpreting the correlation coefficient:

* Positive r => The two variables are positively
associated (large values of one variable correspond to
large values of the other variable)

* Negative r => The two variables are negatively
associated (large values of one variable correspond to
small values of the other variable)

* r=0 => No linear association between the two
variables.

Note: -1 <r <1 always.



How far r is from 0 measures the strength of the linear
relationship:

* r nearly 1 => Strong positive relationship between the
two variables

* r nearly -1 => Strong negative relationship between
the two variables

* r near 0 => Weak relationship between the two
variables

Pictures:

Example (Drug/reaction time data):

Interpretation?



Notes: (1) Correlation makes no distinction between
predictor and response variables.
(2) Variables must be numerical to calculate r.

Examples: What would we expect the correlation to be
if our two variables were:

(1) Work Experience & Salary?

(2) Weight of a Car & Gas Mileage?

Some Cautions

Example:
Speed of a car (X) | 20 30 40 50 60
Mileageinmpg (Y) | 24 28 30 28 24

Scatterplot of these data:

Calculation will show that r = 0 for these data.

Are the two variables related?



Another caution: Correlation between two variables
does not automatically imply that there is a cause-effect
relationship between them.

Note: The population correlation coefficient between
two variables is denoted p. To test Hy: p =0, we simply
use the equivalent test of Hy: B; = 0 in the SLR model.
If this null hypothesis is rejected, we conclude there is a
significant correlation between the two variables.

The square of the correlation coefficient is called the
coefficient of determination, 7.

Interpretation: 7 represents the proportion of sample
variability in Y that is explained by its linear
relationship with X.
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For the drug/reaction time example, =

Interpretation:



Estimation and Prediction with the Regression Model

Major goals in using the regression model:
(1) Determining the linear relationship between Y and
X (accomplished through inferences about B,)

(2) Estimating the mean value of Y, denoted E(Y), for a
particular value of X.

Example: Among all people with drug amount 3.5%,
what is the estimated mean reaction time?

(3) Predicting the value of Y for a particular value of X.
Example: For a “new” individual having drug amount
3.5%, what is the predicted reaction time?

* The point estimate for these last two quantities is the

same; it is:

Example:

* However, the variability associated with these point
estimates is very different.

* Which quantity has more variability, a single Y-value
or the mean of many Y-values?



This is seen in the following formulas:

100(1 — )% Confidence Interval for the mean value of
Yat X =x,:

where t,; based on n - 2 d.f.

100(1 — )% Prediction Interval for the an individual
new value of ¥ at X =x,,:

where t,, based on n — 2 d.f.

The extra “1” inside the square root shows the
prediction interval is wider than the CI, although they
have the same center.

Note: A “Prediction Interval” attempts to contain a
random quantity, while a confidence interval attempts
to contain a (fixed) parameter value.



The variability in our estimate of E(Y) reflects the fact
that we are merely estimating the unknown f, and B;.

The variability in our prediction of the new Y includes
that variability, plus the natural variation in the Y-

values.

Example (drug/reaction time data):
95% CI for E(Y) with X =3.5:

95% PI for a new Y having X = 3.5:



