Correlation

The scatterplot gives us a general idea about whether there is a linear relationship between two variables.

More precise: The <u>coefficient of correlation</u> (denoted r) is a numerical measure of the <u>strength</u> and <u>direction</u> of the <u>linear</u> relationship between two variables.

Formula for r (the correlation coefficient between two variables X and Y):

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}}$$

Most computer packages will also calculate the correlation coefficient.

Interpreting the correlation coefficient:

- Positive r => The two variables are <u>positively</u> <u>associated</u> (large values of one variable correspond to large values of the other variable)
- Negative r => The two variables are <u>negatively</u> <u>associated</u> (large values of one variable correspond to small values of the other variable)
- $r = 0 \implies$ No linear association between the two variables.

Note: $-1 \le r \le 1$ always.

How far r is from 0 measures the *strength* of the linear relationship:

- r nearly 1 => Strong positive relationship between the two variables
- r nearly -1 => Strong negative relationship between the two variables
- r near $0 \Rightarrow$ Weak relationship between the two variables

Pictures:

Example (Drug/reaction time data):

Interpretation?

Notes: (1) Correlation makes no distinction between predictor and response variables.

(2) Variables must be numerical to calculate r.

Examples: What would we expect the correlation to be if our two variables were:

- (1) Work Experience & Salary?
- (2) Weight of a Car & Gas Mileage?

Some Cautions

Example:

Speed of a car (X)	20	30	40	50	<u>60</u>
Mileage in mpg (Y)	24	28	30	28	24

Scatterplot of these data:

Calculation will show that r = 0 for these data.

Are the two variables related?

Another caution: Correlation between two variables does not automatically imply that there is a cause-effect relationship between them.

Note: The population correlation coefficient between two variables is denoted ρ . To test H_0 : $\rho = 0$, we simply use the equivalent test of H_0 : $\beta_1 = 0$ in the SLR model. If this null hypothesis is rejected, we conclude there is a significant correlation between the two variables.

The square of the correlation coefficient is called the coefficient of determination, r^2 .

Interpretation: r^2 represents the proportion of sample variability in Y that is explained by its linear relationship with X.

$$r^2 = 1 - \frac{SSE}{SS_{yy}}$$
 (r^2 always between 0 and 1)

For the drug/reaction time example, $r^2 =$

Interpretation:

Estimation and Prediction with the Regression Model

Major goals in using the regression model:

- (1) Determining the linear relationship between Y and X (accomplished through inferences about β_1)
- (2) Estimating the mean value of Y, denoted E(Y), for a particular value of X.

Example: Among all people with drug amount 3.5%, what is the estimated mean reaction time?

- (3) Predicting the value of Y for a particular value of X. Example: For a "new" individual having drug amount 3.5%, what is the predicted reaction time?
- The point estimate for these last two quantities is the same; it is:

Example:

- However, the variability associated with these point estimates is very different.
- Which quantity has more variability, a single Y-value or the mean of many Y-values?

This is seen in the following formulas:

 $100(1-\alpha)\%$ Confidence Interval for the mean value of Y at $X = x_p$:

where $t_{\alpha/2}$ based on n-2 d.f.

 $100(1-\alpha)\%$ Prediction Interval for the an individual new value of Y at $X = x_p$:

where $t_{\alpha/2}$ based on n-2 d.f.

The extra "1" inside the square root shows the prediction interval is wider than the CI, although they have the same center.

Note: A "Prediction Interval" attempts to contain a random quantity, while a confidence interval attempts to contain a (fixed) parameter value.

The variability in our estimate of E(Y) reflects the fact that we are merely estimating the unknown β_0 and β_1 .

The variability in our prediction of the new Y includes that variability, <u>plus</u> the natural variation in the Y-values.

Example (drug/reaction time data): 95% CI for E(Y) with X = 3.5:

95% PI for a new Y having X = 3.5: