STAT 515 -- Chapter 13: Categorical Data

Recall we have studied binomial data, in which each trial falls into one of 2 categories (success/failure).

Many studies allow for more than 2 categories.

Example 1: Voters are asked which of 6 candidates they prefer.

Example 2: Residents are surveyed about which part of Columbia they live in. (Downtown, NW, NE, SW, SE)

Multinomial Experiment (Extension of a binomial experiment \rightarrow from 2 to k possible outcomes)

- (1) Consists of n identical trials
- (2) There are k possible outcomes (categories) for each trial
- (3) The probabilities for the k outcomes, denoted p_1, p_2, \ldots, p_k , are the same for each trial (and $p_1 + p_2 + \ldots + p_k = 1$)
- (4) The trials are independent

The cell counts, $n_1, n_2, ..., n_k$, which are the number of observations falling in each category, are the random variables which follow a multinomial distribution.

Analyzing a One-Way Table

Suppose we have a single categorical variable with k categories. The cell counts from a multinomial experiment can be arranged in a <u>one-way table</u>.

Example 1: Adults were surveyed about their favorite sport. There were 6 categories.

 p_1 = proportion of U.S. adults favoring football

 p_2 = proportion of U.S. adults favoring baseball

 p_3 = proportion of U.S. adults favoring basketball

 p_4 = proportion of U.S. adults favoring auto racing

 p_5 = proportion of U.S. adults favoring golf

 p_6 = proportion of U.S. adults favoring "other"

It was hypothesized that the true proportions are $(p_1, p_2, p_3, p_4, p_5, p_6) = (.4, .1, .2, .06, .06, .18)$.

95 adults were randomly sampled; their preferences are summarized in the one-way table:

	<u>Favorite Sport</u>						
Football	Baseball	Basketball	Auto	Golf	Other	l n	
37	12	17	8	5	16	95	

We test our null hypothesis (at $\alpha = .05$) with the following test:

Test for Multinomial Probabilities

 $H_0: p_1 = p_{1,0}, p_2 = p_{2,0}, ..., p_k = p_{k,0}$

H_a: at least one of the hypothesized probabilities is

wrong

The test statistic is:

where n_i is the observed "cell count" for category i and $E(n_i)$ is the expected cell count for category i if H_0 is true.

Rejection region: $\chi^2 > \chi^2_{\alpha}$ where χ^2_{α} based on k-1 d.f. (large values of $\chi^2 =>$ observed n_i very different from expected $E(n_i)$ under H_0)

Assumptions: (1) The data are from a multinomial experiment. (2) Every expected cell count $E(n_i)$ is at least 5. (large-sample test)

Finding expected cell counts: Note that $E(n_i) = np_{i,0}$.

For our data,

i n_i

 $\mathbf{E}(n_{\mathrm{i}})$

Test statistic value:

From Table VII:

Analyzing a Two-Way Table

Now we consider observations that are classified according to <u>two</u> categorical variables.

Such data can be presented in a <u>two-way</u> table (contingency table).

Example: Suppose the people in the "favorite-sport" survey had been further classified by gender:

Two categorical variables: Gender and Favorite Sport.

Question: Are the two classifications independent or dependent?

For instance, does people's favorite sport depend on their gender? Or does gender have no association with favorite sport?

Observed Counts for a $r \times c$ Contingency Table (r = # of rows, c = # of columns)

Probabilities for a $r \times c$ Contingency Table:

		Column Variable				
	_	1	2	•••	c	1
	1	$ p_{11} $	p_{12}	•••	p_{1c}	$p_{\text{row }1}$
Row	2	$ p_{21} $	p_{22}	•••	p_{2c}	$ p_{\text{row 2}} $
	•	•	•		•	•
Variable	•	•	•		•	:
	<u>r</u>	<i>p</i> _{r1}	p_{r2}	•••	_ <i>p</i> _rc	$p_{\text{row r}}$
		$p_{\text{col }1}$	$p_{\text{col }2}$		$p_{\rm col\ c}$	1

Note: If the two classifications are <u>independent</u>, then: $p_{11} = (p_{\text{row 1}})(p_{\text{col 1}})$ and $p_{12} = (p_{\text{row 1}})(p_{\text{col 2}})$, etc.

So under the hypothesis of independence, we expect the cell probabilities to be the product of the corresponding <u>marginal probabilities</u>.

Hence the (estimated) expected count in cell (i, j) is simply:

χ^2 test for independence

 H_0 : The classifications are independent

H_a: The classifications are dependent

Test statistic:

where the expected count in cell (i, j) is $\hat{E}(n_{ij}) = \frac{r_i c_j}{n}$

Rejection region: $\chi^2 > \chi^2_{\alpha}$, where χ^2_{α} is based on (r-1)(c-1) d.f. and r = # of rows, c = # of columns.

Note: We need the sample size to be large enough that every expected cell count is at least 5.

Example: Does the incidence of heart disease depend on snoring pattern? (Test using $\alpha = .05$.) Random sample of 2484 adults taken; results given in a contingency table:

		Snoring Pattern				
		Never	Occasionally	≈Every Night		
Heart	Yes	24	35	51	110	
Disease	No	1355	603	416	2374	
	ada ajan aday ajiya aziliy aya aliyi aliya azili ay	1379	638	467	2484	

Expected Cell Counts:

Test statistic: