Estimating σ^2

- We can do simple prediction of Y and estimation of the mean of Y at any value of X.
- To perform <u>inferences</u> about our regression line, we must estimate σ^2 , the variance of the error term.
- For a random variable Y, the estimated variance is:

• In regression, the estimated variance of Y (and also of ε) is:

 $\sum (Y - \hat{Y})^2$ is called the error (residual) sum of squares (SSE).

- It has n-2 degrees of freedom.
- The ratio MSE = SSE / df is called the <u>mean squared</u> error.

- MSE is an unbiased estimate of the error variance σ^2 .
- Also, \sqrt{MSE} serves as an estimate of the error standard deviation σ .

Partitioning Sums of Squares

• If we did not use *X* in our model, our estimate for the mean of *Y* would be:

Picture:

For each data point:

- $Y \overline{Y}$ = difference between observed Y and sample mean Y-value
- $Y \hat{Y} =$ difference between observed Y and <u>predicted</u> Y-value
- $\hat{Y} \overline{Y} =$ difference between predicted Y and sample mean Y-value
- It can be shown:

- TSS = overall variation in the Y-values
- SSR = variation in Y accounted for by regression line
- SSE = extra variation beyond what the regression relationship accounts for

Computational Formulas:

$$TSS = S_{YY} = \sum Y^{2} - \frac{(\sum Y)^{2}}{n}$$

$$SSR = (S_{XY})^{2} / S_{XX} = \hat{\beta}_{1} S_{XY}$$

$$SSR = (S_{XY})^2 / S_{XX} = \hat{\beta}_1 S_{XY}$$

$$SSE = S_{YY} - (S_{XY})^2 / S_{XX} = S_{YY} - \hat{\beta}_1 S_{XY}$$

Case (1): If SSR is a large part of TSS, the regression line accounts for a lot of the variation in Y.

Case (2): If SSE is a large part of TSS, the regression line is leaving a great deal of variation unaccounted for.

ANOVA test for β_1

- If the SLR model is useless in explaining the variation in Y, then \overline{Y} is just as good at estimating the mean of Y as \hat{Y} is.
- \Rightarrow true β_1 is zero and X doesn't belong in model
- Corresponds to case (2) above.

- But if (1) is true, and the SLR model explains a lot of the variation in Y, we would conclude $\beta_1 \neq 0$.
- How to compare SSR to SSE to determine if (1) or (2) is true?
- Divide by their degrees of freedom. For the SLR model:

- We test:
- If MSR much bigger than MSE, conclude H_a. Otherwise we cannot conclude H_a.

The ratio $F^* = MSR / MSE$ has an F distribution with df = (1, n - 2) when H_0 is true.

Thus we reject H₀ when

where α is the significance level of our hypothesis test.

t-test of H_0 : $\beta_1 = 0$

- Note: β_1 is a parameter (a fixed but <u>unknown</u> value)
- The estimate $\hat{\beta}_1$ is a <u>random variable</u> (a statistic calculated from sample data).
- Therefore $\hat{\beta}_1$ has a <u>sampling distribution</u>:

- $\hat{\beta}_1$ is an unbiased estimator of β_1 .
- $\hat{\beta}_1$ estimates β_1 with greater precision when:
 - \bullet the true variance of Y is small.
 - the sample size is large.
 - the X-values in the sample are spread out.

Standardizing, we see that:

Problem: σ^2 is typically unknown. We estimate it with MSE. Then:

To test H_0 : $\beta_1 = 0$, we use the test statistic:

Advantages of t-test over F-test:

(1) Can test whether the true slope equals <u>any</u> specified value (not just 0).

Example: To test H_0 : $\beta_1 = 10$, we use:

(2) Can also use t-test for a one-tailed test, where: H_a : $\beta_1 < 0$ or H_a : $\beta_1 > 0$.

 H_a Reject H_0 if:

(3) The value $\sqrt{\frac{MSE}{S_{XX}}}$ measures the precision of $\hat{\beta}_1$ as an estimate.

Confidence Interval for β_1

• The sampling distribution of $\hat{\beta}_1$ provides a confidence interval for the <u>true slope</u> β_1 :

Example (House price data):

Recall:
$$S_{YY} = 93232.142$$
, $S_{XY} = 1275.494$, $S_{XX} = 22.743$

Our estimate of σ^2 is MSE = SSE / (n-2)

$$SSE =$$

$$MSE =$$

and recall

• To test H_0 : $\beta_1 = 0$ vs. H_a : $\beta_1 \neq 0$ (at $\alpha = 0.05$)

Table A2: $t_{.025}(56) \approx 2.004$.

• With 95% confidence, the true slope falls in the interval

Interpretation:

Inference about the Response Variable

- We may wish to:
- (1) Estimate the mean value of Y for a particular value of X. Example:
- (2) Predict the value of Y for a particular value of X. Example:

The point estimates for (1) and (2) are the same: The value of the estimated regression function at X = 1.75.

Example:

• Variability associated with estimates for (1) and (2) is quite different.

$$Var[\hat{E}(Y \mid X)] =$$

$$Var[\hat{Y}_{pred}] =$$

• Since σ^2 is unknown, we estimate σ^2 with MSE:

CI for E(Y | X) at x^* :

Prediction Interval for Y value of a new observation with $X = x^*$:

Example: 95% CI for mean selling price for houses of 1750 square feet:

Example: 95% PI for selling price of a new house of 1750 square feet:

Correlation

- $\hat{\beta}_1$ tells us something about whether there is a linear relationship between Y and X.
- Its value depends on the <u>units of measurement</u> for the variables.
- The <u>correlation coefficient</u> r and the <u>coefficient of</u> <u>determination</u> r^2 are <u>unit-free</u> numerical measures of the linear association between two variables.

 $\bullet r =$

(measures strength and direction of linear relationship)

- r always between -1 and 1:
- \bullet $r > 0 \rightarrow$

$$\bullet$$
 $r < 0 \rightarrow$

•
$$r = 0 \rightarrow$$

•
$$r$$
 near -1 or 1 \rightarrow

- r near $0 \rightarrow$
- Correlation coefficient (1) makes no distinction between independent and dependent variables, and (2) requires variables to be numerical.

Examples:

House data:

Note that $r = \hat{\beta}_1 \left(\frac{s_x}{s_y} \right)$ so r always has the same sign as the estimated slope.

- The population correlation coefficient is denoted ρ .
- Test of H_0 : $\rho = 0$ is equivalent to test of H_0 : $\beta_1 = 0$ in SLR (p-value will be the same)
- Software will give us r and the p-value for testing H_0 : $\rho = 0$ vs. H_a : $\rho \neq 0$.
- \bullet To test whether ρ is some nonzero value, need to use transformation see p. 318.

- The square of r, denoted r^2 , also measures strength of linear relationship.
- Definition: $r^2 = SSR / TSS$. <u>Interpretation of r^2 </u>: It is the proportion of overall sample variability in Y that is explained by its linear relationship with X.

Note: In SLR,
$$F = \frac{(n-2)r^2}{1-r^2}$$
.

• Hence: large $r^2 \rightarrow$ large F statistic \rightarrow significant linear relationship between Y and X.

Example (House price data):

Interpretation:

Regression Diagnostics

- We assumed various things about the random error term. How do we check whether these assumptions are satisfied?
- The (unobservable) error term for each point is:

- As "estimated" errors we use the <u>residuals</u> for each data point:
- Residual plots allow us to check for four types of violations of our assumptions:
- (1) The model is misspecified (linear trend between Y and X incorrect)
- (2) Non-constant error variance (spread of errors changes for different values of X)
- (3) Outliers exist (data values which do not fit overall trend)
- (4) Non-normal errors (error term is not (approx.) normally distributed)
- ullet A residual plot plots the residuals $Y \hat{Y}$ against the predicted values \hat{Y} .
- If this residual plot shows <u>random scatter</u>, this is good.
- If there is some notable pattern, there is a possible violation of our model assumptions.

Pattern Violation

- We can verify whether the errors are approximately normal with a Q-Q plot of the residuals.
- If Q-Q plot is roughly a straight line \rightarrow the errors may be assumed to be normal.

Example (House data):

<u>Remedies for Violations – Transforming Variables</u>

- When the residual plot shows megaphone shape (non-constant error variance) opening to the right, we can use a <u>variance-stabilizing transformation</u> of *Y*.
- Picture:

• Let $Y^* = \log(Y)$ or $Y^* = \sqrt{Y}$ and use Y^* as the dependent variable.

- ullet These transformations tend to reduce the spread at high values of \hat{Y} .
- Transformations of Y may also help when the error distribution appears <u>non-normal</u>.
- Transformations of *X* and/or of *Y* can help if the residual plot shows evidence of a <u>nonlinear trend</u>.
- Depending on the situation, one or more of these transformations may be useful:

• Drawback: Interpretations, predictions, etc., are now in terms of the <u>transformed variables</u>. We must reverse the transformations to get a meaningful prediction.

Example (Surgical data):