Multiple Regression

• Often we have data on <u>several</u> independent variables that can be used to predict / estimate the response.

Example: To predict Y = teacher salary, we may use:

Example: Y = sales at music store may be related to:

• A linear regression model with more than one independent variable is a <u>multiple linear regression</u> (MLR) model:

• In general, we have m independent variables and m+1 unknown regression parameters.

Purposes of the MLR model

- (1) Estimate the mean response $E(Y | \underline{X})$ for a given set of $X_1, X_2, ..., X_m$ values.
- (2) Predict the response for a given set of $X_1, X_2, ..., X_m$ values.
- (3) Evaluate the relationship between Y and the independent variables by interpreting the partial regression coefficients β_0 , β_1 , ..., β_m (or their estimates).

Interpretations:

- (Estimated intercept): the (estimated) mean response if <u>all</u> independent variables are zero (may not make sense)
- β_i (or $\hat{\beta}_i$): The (estimated) change in mean response for a one-unit increase in X_i , holding constant all other independent variables.
- May not be possible: What if X_1 = home runs and X_2 = runs scored?
- Note: The <u>partial effects</u> of each independent variable in a MLR model do <u>not</u> equal the effect of each variable in separate SLR models.
- Why? The independent variables tend to be correlated to some degree.

- Partial effect: interpreted as the effect of an independent variable "<u>in the presence of</u> the other variables in the model."
- Finding least-squares estimates of β_0 , β_1 , ..., β_m is typically done using matrices:

$$\underline{\hat{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}}\underline{\mathbf{Y}}$$

where: \underline{Y} = vector of the *n* observed *Y* values in data set X = matrix containing the observed values of the independent variables (see sec. 8.2)

 $\underline{\hat{\beta}}$ = a vector of the least squares estimates $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_m$

• We will use software to find the estimates of the regression coefficients in the MLR model.

Example: Data gathered for 30 California cities.

 \overline{Y} = annual precipitation (in inches)

 $X_1 =$ altitude (in feet)

 $X_2 =$ latitude (in degrees)

 X_3 = distance from Pacific (in miles)

Estimated model is: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$ From computer:

Interpretation of \hat{eta}_0 ?

Interpretation of $\hat{\beta}_2$?

Interpretation of $\hat{\beta}_3$?

Inference with the MLR model

- Again, we don't know σ^2 (the error variance), so we must estimate it.
- Again, we use as our estimate of σ^2 :
- As in SLR, the total variation in the sample Y values can be separated: TSS = SSR + SSE.
- SS formulas given in book for MLR, we will use software.

Rain example:
$$SSR = SSE =$$

Error
$$df = MSE =$$

- Most values in ANOVA table similar as for SLR.
- m d.f. associated with SSR
- n m 1 d.f. associated with SSE

Overall F-test

- Tests whether the model as a whole is useless.
- \bullet Null hypothesis: none of the independent variables are useful for predicting Y.

$$H_0$$
: $\beta_1 = \beta_2 = ... = \beta_m = 0$

H_a: At least one of these is not zero

- Again, test statistic is F* = MSR / MSE
- If $F^* > F_{\alpha}(m, n m 1)$, then reject H_0 and conclude at least one of the variables is useful.

Rain data: $F^* =$

Testing about Individual Coefficients

- Most easily done with t-tests.
- The *j*-th estimate, $\hat{\beta}_j$, is (approximately) normal with mean β_j and standard deviation $\sqrt{c_{jj}\sigma^2}$, where $\mathbf{c_{jj}} = \mathbf{j}$ -th diagonal element of $(\mathbf{X}^T\mathbf{X})^{-1}$ matrix.
- Replace σ^2 with its estimate, MSE:

• To test H_0 : $\beta_j = 0$, note:

 \bullet For each coefficient, computer gives: $\hat{\beta}_{\scriptscriptstyle j}$, $\sqrt{c_{\scriptscriptstyle jj}MSE}$, and t statistic.

 H_a Reject H_0 if:

Software gives P-value for the (two-tailed) test about $\underline{each}~\beta_j$ separately.

Rain data:

F-tests about sets of independent variables

• We can also test whether certain sets of independent variables are useless, in the presence of the other variables in the model.

Example: Suppose variables under consideration are $X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8$.

Question: Are X_2 , X_4 , X_7 needed, if the others are in the model?

- We want our model to have "large" SSR and "small" SSE. Why?
- If "full model" has much lower SSE than the "reduced model" (without X_2 , X_4 , X_7), then at least one of X_2 , X_4 , X_7 is needed.
- \rightarrow conclude β_2 , β_4 , β_7 not all zero.
- To test: H_0 : $\beta_2 = \beta_4 = \beta_7 = 0$ vs. H_a : β_2 , β_4 , β_7 not all zero

Use:

Reject H₀ if

Example above: numerator d.f. =

• Can test about more than one (but not all) coefficients within computer package (TEST statement in SAS or anova function in R)

Example:

Inferences for the Response Variable in MLR

As in SLR, we can find:

- CI for the mean response for a given set of values of $X_1, X_2, ..., X_m$.
- PI for the response of a new observation with a given set of values of $X_1, X_2, ..., X_m$.

Examples:

- Find a 90% CI for the mean precipitation for all cities with altitude 100 feet, latitude 40 degrees, and 70 miles from the coast.
- Find a 90% prediction interval for the precipitation of a new city having altitude 100 feet, latitude 40 degrees, and 70 miles from the coast.

Interpretations:
• The coefficient of determination in MID is denoted
• The coefficient of determination in MLR is denoted R ² .
• It is the proportion of variability in Y explained by the linear relationship between Y and <u>all</u> the independent variables (Note: $0 \le R^2 \le 1$).
 The higher R², the better the linear model explains the variation in Y. No exact rule about what a "good" R² is.
Rain example:
Interpretation: