One-Way Analysis of Variance

- With <u>regression</u>, we related two quantitative, typically <u>continuous</u> variables.
- Often we wish to relate a quantitative <u>response</u> variable with a qualitative (or simply discrete) independent variable, also called a <u>factor</u>.
- In particular, we wish to compare the mean response value at <u>several levels</u> of the discrete independent variable.

Example: We wish to compare the mean wage of farm laborers for 3 different races (black, white, Hispanic). Is there a difference in true mean wage among the ethnic groups?

- If there were only 2 levels, could do a:
- For 3 or more levels, must use the Analysis of Variance (ANOVA).
- The Analysis of Variance tests whether the means of t populations are equal. We test:

• Suppose we have t = 4 populations. Why not test:

with a series of t-tests?

- If each test has $\alpha = .05$, probability of correctly failing to reject H_0 in all 6 tests (when all nulls are true) is:
- \rightarrow Actual significance level of the procedure is 0.265, not 0.05 \rightarrow We will make <u>some</u> Type I error with probability 0.265 if all 6 means are truly equal.

Why Analyze Variances to Compare Means?

• Look at Figure 6.1, page 223.

Case I and Case II: Both have independent samples from 3 populations.

- The positions of the 3 sample means are the same in each case.
- In which case would we conclude a definite difference among population means μ_1 , μ_2 , μ_3 ?

Case I?

Case II?

• This comparison of variances is at the heart of ANOVA.

Assumptions for the ANOVA test:

- (1) There are t independent samples taken from t populations having means $\mu_1, \mu_2, ..., \mu_t$.
- (2) Each population has the same variance, σ^2 .
- (3) Each population has a normal distribution.
- The data (observed values of the response variable) are denoted:

• Each sample has size n_i , for a total of observations.

Example: $Y_{47} =$

Notation

The *i*-th level's total: $Y_{i\bullet}$ (sum over *j*)

The *i*-th level's mean: \overline{Y}_{i} .

The overall total: $Y_{\bullet \bullet}$ (sum over i and j)

The overall mean: $\overline{Y}_{\bullet \bullet}$

Estimating the variance σ^2

• For i = 1, ..., t, the sum of squares for each level is

 $SS_i =$

- Adding all the SS_i's gives the pooled sum of squares:
- Dividing by our degrees of freedom gives our estimate of σ^2 :

• Recall: For 2-sample t-test, pooled sample variance was:

- This is the correct estimate of σ^2 if all t populations have equal variances.
- We will have to check this assumption.

Development of ANOVA F-test

- Assume sample sizes all equal to n: $n_1 = n_2 = ... = n_t (= n) \leftarrow \text{balanced data}$
- Suppose H_0 : $\mu_1 = \mu_2 = ... = \mu_t$ (= μ) is true.
- Then each sample mean \overline{Y}_i . has mean and variance
- Treat these group sample means as the "data" and treat the overall sample mean as the "mean" of the group means. Then an estimate of σ^2 / n is:

Recall:

Consider the statistic:

- With normal data, the ratio of two independent estimates of a common variance has an F-distribution.
- \rightarrow If H₀ true, we expect F* has an F-distribution.
- If H_0 false $(\mu_1, \mu_2, ..., \mu_t$ not all equal), the sample means should be more spread out.

 \rightarrow

 \longrightarrow

General ANOVA Formulas (Balanced or Unbalanced)

- We want to compare the variance <u>between (among)</u> the sample means with the variance <u>within the different groups</u>.
- Variance between group means measured by:

and, after dividing by the "between groups" degrees of freedom,

• Variance within groups measured by:
and, after dividing by the "within groups" degrees of freedom,
• In general, our F-ratio is:
• Under H ₀ , F* has an F-distribution with:
• The total sum of squares for the data:
can be partitioned into
• The degrees of freedom are also partitioned:

• This can be summarized in the ANOVA table:

Source df SS MS F

Example: Table 6.4 (p. 227) gives yields (in pounds/acre) for 4 different varieties of rice (4 observations for each variety)

$$\sum_{i} \frac{Y_{i\bullet}^{2}}{n_{i}} =$$

$$\frac{Y_{\bullet\bullet}^2}{\sum n_i} =$$

$$SSB =$$

$$\sum Y_{ij}^2 =$$

$$SSW =$$

ANOVA table for Rice Data:

• Back to original question: Do the four rice varieties have equal population mean yields or not?

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$

H_a: At least one equality is not true

Test statistic:

At $\alpha = 0.05$, compare to:

Conclusion:

"Treatment Effects" Linear Model:

Our ANOVA model equation:

Denote the *i*-th "treatment effect" by:

- The ANOVA model can now be written as:
- Note that our ANOVA test of:

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_t$

is the same as testing:

Note: For balanced data,

$$E(MSB) =$$
 and $E(MSW) =$

If H_0 is true (all $\tau_i = 0$):

If H₀ is false: