Design of Experiments
● Factorial experiments require a lot of resources
● Sometimes real-world practical considerations require us to design experiments in specialized ways.
● The design of an experiment is the specification of how treatments are assigned to experimental units.

Goal:  Gain maximum amount of reliable information using minimum amount of resources.

● Reliability of information is measured by the standard error of an estimate.

● How to decrease standard errors and thereby increase reliability?
● Recall the One-Way ANOVA:  

● Experiments we studied used the Completely Randomized Design (CRD).

● The estimate of 2 was MSW.  This measured the variation among responses for units that were treated alike (measured variation within groups).
● We call this estimating the experimental error variation.
● What if we divide the units into subgroups (called blocks) such that units within each subgroup were similar in some way?
● We would expect the variation in response values among units treated alike within each block to be relatively small.
Randomized Block Design (RBD)

● RBD:  A design in which experimental units are divided into subgroups called blocks and treatments are randomly assigned to units within each block.
● Blocks should be chosen so that units within a block are similar in some way.
● Reasons for the variation in our data values:
CRD






RBD
● Benefits of a reduction in experimental error:

● decreases MSW (denominator of F* ratios used in F-tests) → more power to reject null hypotheses
● decreases standard errors of means → shorter CIs for mean responses

Example 1:  Suppose we investigate whether the average math-test scores of students from 8 different majors differ across majors.

● But … students will be taught by different instructors.
● We’re not as interested in the instructor effect, but we know it adds another layer of variability.
Solution:

Example 2:  Lab animals of a certain species are given different diets to determine the effect of diet on weight gain.

● Possible block design:

Example 3:  An industrial experiment is conducted over several days (with a different lab technician each day).

● Possible block design:

Example 4:  (Table 10.2 data)

Y = wheat crop yield

experimental units = plots of wheat

treatments = 3 different varieties of wheat

blocks = regions of field

Possible arrangement:

● The data are given in Table 10.2.
● Note:  Variety A has the greatest mean yield, but there is a sizable variation among blocks.
● If we had used a CRD, this variation would all be experimental error variance (inflates MSW).
● Analysis as CRD (ignoring blocks):
● But … within each block, Variety A clearly has the greatest yield (RBD will account for this).
Formal Linear Model for RBD

● This assumes one observation per treatment-block combination.

Yij = response value for treatment i in block j
 = an overall mean response

i = effect of treatment i
j = effect of treatment j
ij = random error term

● Looks similar to two-factor factorial model with one observation per cell.
Key difference:  With RBD, we are not equally interested in both factors.  

● The treatment factor is of primary importance; the blocking factor is included merely to reduce experimental error variance.
● With RBD, the block effects are often considered random (not fixed) effects.
● This is true if the blocks used are a random sample from a large population of possible blocks.

● If treatment effects are fixed and block effects are random, the RBD model is called a mixed model.

● In this case, the treatment-block interaction is also random.

● This interaction measures the variation among treatment effects across the various blocks.

● The mean square for interaction is used here as an estimate of the experimental error variance 2.

Expected Mean Squares in RBD
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df



E(MS)

● Testing for an effect on the mean response among treatments:
H0:

● The correct test statistic is apparent based on E(MS):

F* =                                    Reject H0 if:

● Testing for significant variation across blocks:

H0:

● The correct test statistic is again apparent:

F* =                                    Reject H0 if:

Example:  (Wheat data – Table 10.2)

● The ANOVA table formulas are the same as for the two-way ANOVA.

● We use software for the ANOVA table computations.

RBD analysis (Wheat data):

F* = 

● We conclude that the mean yields are significantly different for the different varieties of wheat.  At  = 0.05, we reject H0: 1 = 2 = 3 = 0.
Note (for testing about blocks):

F* = 

● We would also reject H0: 2 = 0 and conclude there is significant variation among block effects.

● We can again make pre-planned comparisons using contrasts.

Example:  Is Variety A superior to the other two varieties in terms of mean yield?

H0:  

Ha:

Result:

