Other Noninformative Priors

» Other methods for noninformative priors include
» Bernardo’s reference prior, which seeks a prior that will
maximize the discrepancy between the prior and the posterior
and minimize the discrepancy between the likelihood and the
posterior (a “dominant likelihood prior”).
» An improper prior, in which [ p(8) = cc.
e

> A highly diffuse proper prior, e.g., for normal data with x
unknown, a N(0,1000000) prior for . (This is very close to
the improper prior p(u) o< 1.)



Informative Prior Forms

» Informative prior information is usually based on expert
opinion or previous research about the parameter(s) of
interest.

Power Priors

» Suppose we have access to previous data xp that is
analogous to the data we will gather.

» Then our “power prior" could be

p(6]xo0 a0) o< p(B)[L(6]x0)]*

where p(6) is an ordinary prior and ag € [0, 1] is an exponent
measuring the influence of the previous data.



Power Priors

» As ag — 0, the influence of the previous data is lessened.
» As a9 — 1, the influence of the previous data is strengthened.

» The posterior, given our actual data x, is then

(0%, %0, 20) o< p(6|x0, 20)L(0]x)

» To avoid specifying a single ag value: We could put a, say,
beta distribution p(ap) on ag and average over values of ag in
[0, 1]:

1
p(6lx0) = /0 p(6)[L(6]x0)]* p(a0) dao



Prior Elicitation

» A challenge is putting “expert opinion” into a form where it
can be used as a prior distribution.
Strategies:

» Requesting guesses for several quantiles (maybe {0.1, 0.25,
0.5, 0.75, 0.9}?) from a few experts.

» For a normal prior, note that a quantile g(«) is related to the
z-value ®~1(a) by:

g(@) = mean + @7 }(a) x (std. dev.)

> Via regression on the provided [g(a), ()] values, we can
get estimates for the mean and standard deviation of the
normal prior.



Prior Elicitation

» Another strategy asks the expert to provide a “predictive
modal value” (most “likely” value) for the parameter.

» Then a rough 67% interval is requested from the expert.

» With a normal prior, the length of this interval is twice the
prior standard deviation.

» For a prior on a Bernoulli probability, the “most likely”
probability of success is often “clear”.



Spike-and-Slab Priors for Linear Models

» In regression, the priors on the regression coefficients are
crucial.

» Whether or not 3; = 0 defines whether X; is “important” in
the regression.

» For any j, a useful prior for §3; is:




Spike-and-Slab Priors for Linear Models

» Here: P(8; = 0) = hgj ( = prior probability that X is not
needed in the model)

> P(Bj #0) =1~ hoj = hyj(f; — (—f;)) = 2fjhy; (where [£;, ]
contains all “reasonable” values for 3;)

» To include X; in the model with certainty, set hg; = 0.

> To reflect more doubt that Xj should be in the model,
increase the ratio

hoj hoj _op hoj
hy (1= ho)/2f; ™

- 1— hy

» Recently, “nonparametric priors” have become popular,
typically involving a mixture of Dirichet processes.



CHAPTER 6 SLIDES START HERE



The Monte Carlo Method

» The Monte Carlo method involves studying a distribution
(e.g., a posterior) and its characteristics by generating many
random observations having that distribution.

> 1f o) .. 60) i 7(0|x), then the empirical distribution of
{61, ... 05} approximates the posterior, when S is large.
» By the law of large numbers,

1 S
5 2 e(0%) — Ele(0)

as S — oo.



The Monte Carlo Method

Soas S — oo

S

0 = 5 ZG(S) — posterior mean

s=1
1 S
S—1 Z(e(s) — #)? — posterior variance
s=1
#{00) < c}
S

median{G(l), el 0(5)} — posterior median

— P[0 < clx]

(and similarly for any posterior quantile).



The Monte Carlo Method

» If the posterior is a “common” distribution, as in many
conjugate analyses, we could draw samples from the posterior
using R functions.

Example 1: (General Social Survey)
» Sample 1: # of children for women age 40+, no bachelor’s
degree.

» Sample 2: # of children for women age 40+, bachelor’s
degree or higher.

» Assume Poisson(6;) and Poisson(62) models for the data.

» We use gamma(2,1) priors for #; and for 6.



The Monte Carlo Method

Data: n; =111, ), xj1 = 217

Data: n, =44, > . xj» = 66

= Posterior for 61 is gamma(219,112).
= Posterior for 6, is gamma(68, 45).
Find P[91 > 92|X1,X2].

Find posterior distribution of the ratio %.
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See R example using Monte Carlo method on course web page.



