
Other Noninformative Priors

I Other methods for noninformative priors include
I Bernardo’s reference prior, which seeks a prior that will

maximize the discrepancy between the prior and the posterior
and minimize the discrepancy between the likelihood and the
posterior (a “dominant likelihood prior”).

I An improper prior, in which
∫
Θ

p(θ) = ∞.

I A highly diffuse proper prior, e.g., for normal data with µ
unknown, a N(0, 1000000) prior for µ. (This is very close to
the improper prior p(µ) ∝ 1.)



Informative Prior Forms

I Informative prior information is usually based on expert
opinion or previous research about the parameter(s) of
interest.

Power Priors

I Suppose we have access to previous data x0 that is
analogous to the data we will gather.

I Then our “power prior” could be

p(θ|x0, a0) ∝ p(θ)[L(θ|x0)]
a0

where p(θ) is an ordinary prior and a0 ∈ [0, 1] is an exponent
measuring the influence of the previous data.



Power Priors

I As a0 → 0, the influence of the previous data is lessened.

I As a0 → 1, the influence of the previous data is strengthened.

I The posterior, given our actual data x, is then

π(θ|x, x0, a0) ∝ p(θ|x0, a0)L(θ|x)

I To avoid specifying a single a0 value: We could put a, say,
beta distribution p(a0) on a0 and average over values of a0 in
[0, 1]:

p(θ|x0) =

∫ 1

0
p(θ)[L(θ|x0)]

a0p(a0) da0



Prior Elicitation

I A challenge is putting “expert opinion” into a form where it
can be used as a prior distribution.
Strategies:

I Requesting guesses for several quantiles (maybe {0.1, 0.25,
0.5, 0.75, 0.9}?) from a few experts.

I For a normal prior, note that a quantile q(α) is related to the
z-value Φ−1(α) by:

q(α) = mean + Φ−1(α)× (std. dev.)

I Via regression on the provided [q(α),Φ−1(α)] values, we can
get estimates for the mean and standard deviation of the
normal prior.



Prior Elicitation

I Another strategy asks the expert to provide a “predictive
modal value” (most “likely” value) for the parameter.

I Then a rough 67% interval is requested from the expert.

I With a normal prior, the length of this interval is twice the
prior standard deviation.

I For a prior on a Bernoulli probability, the “most likely”
probability of success is often “clear”.



Spike-and-Slab Priors for Linear Models

I In regression, the priors on the regression coefficients are
crucial.

I Whether or not βj = 0 defines whether Xj is “important” in
the regression.

I For any j , a useful prior for βj is:
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Spike-and-Slab Priors for Linear Models

I Here: P(βj = 0) = h0j ( = prior probability that Xj is not
needed in the model)

I P(βj 6= 0) = 1− h0j = h1j

(
fj − (−fj)

)
= 2fjh1j (where [−fj , fj ]

contains all “reasonable” values for βj)

I To include Xj in the model with certainty, set h0j = 0.

I To reflect more doubt that Xj should be in the model,
increase the ratio

h0j

h1j
=

h0j

(1− h0j)/2fj
= 2fj

h0j

1− h0j

I Recently, “nonparametric priors” have become popular,
typically involving a mixture of Dirichet processes.



CHAPTER 6 SLIDES START HERE



The Monte Carlo Method

I The Monte Carlo method involves studying a distribution
(e.g., a posterior) and its characteristics by generating many
random observations having that distribution.

I If θ(1), . . . , θ(S) iid∼ π(θ|x), then the empirical distribution of
{θ(1), . . . , θ(S)} approximates the posterior, when S is large.

I By the law of large numbers,

1

S

S∑
s=1

g(θ(s)) → E [g(θ)|x]

as S →∞.



The Monte Carlo Method

So as S →∞:

θ̄ =
1

S

S∑
s=1

θ(s) → posterior mean

1

S − 1

S∑
s=1

(θ(s) − θ̄)2 → posterior variance

#{θ(s) ≤ c}
S

→ P[θ ≤ c |x]

median{θ(1), . . . , θ(S)} → posterior median

(and similarly for any posterior quantile).



The Monte Carlo Method

I If the posterior is a “common” distribution, as in many
conjugate analyses, we could draw samples from the posterior
using R functions.

Example 1: (General Social Survey)

I Sample 1: # of children for women age 40+, no bachelor’s
degree.

I Sample 2: # of children for women age 40+, bachelor’s
degree or higher.

I Assume Poisson(θ1) and Poisson(θ2) models for the data.

I We use gamma(2,1) priors for θ1 and for θ2.



The Monte Carlo Method

I Data: n1 = 111,
∑

i xi1 = 217

I Data: n2 = 44,
∑

i xi2 = 66

I ⇒ Posterior for θ1 is gamma(219,112).

I ⇒ Posterior for θ2 is gamma(68, 45).

I Find P[θ1 > θ2|x1, x2].

I Find posterior distribution of the ratio θ1
θ2

.

I See R example using Monte Carlo method on course web page.


