MCMC Methods

- In many cases the posterior distribution does not have a simple recognizable form, and so we cannot sample from it using built-in R functions like "rgamma"
- ► In this case, Markov chain Monte Carlo (MCMC) sampling methods are used.
- A Markov chain is an ordered, indexed set of random variables (a stochastic process) in which the value of each quantity depends probabilistically only on the previous quantity.

MCMC Methods

- ▶ Specifically, if $\{\theta^{[0]}, \theta^{[1]}, \theta^{[2]}, \ldots\}$ is a Markov chain, then it has the **Markovian** property:
- ▶ For any set A,

$$P\{\theta^{[t]} \in \mathcal{A}|\theta^{[0]}, \theta^{[1]}, \dots, \theta^{[t-1]}\} = P\{\theta^{[t]} \in \mathcal{A}|\theta^{[t-1]}\}$$

- So $\theta^{[t]}$ is **conditionally independent** of all earlier values **except** the previous one.
- ► So the values in a Markov chain are not independent, but are "almost independent."

Gibbs Sampling

- ▶ The **Gibbs Sampler** is a MCMC algorithm that approximates the **joint distribution** of *k* random quantities by sampling from each **full conditional** distribution in turn.
- **Example**: We are interested in the distribution of $\theta = (\theta_1, \theta_2, \dots, \theta_k)$. The Gibbs algorithm is:
- 1. Choose initial values $\theta^{[0]} = (\theta_1^{[0]}, \theta_2^{[0]}, \dots, \theta_k^{[0]})$.
- 2. Cycle through each **full** conditional distribution, sampling, for t = 1, 2, ...

$$\theta_{1}^{[t]} \sim \pi(\theta_{1}|\theta_{2}^{[t-1]}, \dots, \theta_{k}^{[t-1]})$$

$$\theta_{2}^{[t]} \sim \pi(\theta_{2}|\theta_{1}^{[t]}, \theta_{3}^{[t-1]}, \dots, \theta_{k}^{[t-1]})$$

$$\vdots$$

$$\theta_{k}^{[t]} \sim \pi(\theta_{k}|\theta_{1}^{[t]}, \theta_{2}^{[t]}, \dots, \theta_{k}^{[t]})$$

3. Repeat steps in (2) until convergence.

Gibbs Sampling

- ▶ We must be able to sample from each of the full conditional distributions to use the Gibbs Sampler.
- Note that in each step, the **most recent** value of **each** θ_j is conditioned on.
- After many cycles, the sampled values of $(\theta_1, \ldots, \theta_k)$ will approximate random draws from the joint distribution of $(\theta_1, \ldots, \theta_k)$.
- Then we can summarize, say, a posterior distribution of interest as before.

A Simple Gibbs Example

- **Example 2**: Testing the effectiveness of a seasonal flu shot.
- ▶ 20 individuals are given a flu shot at the start of winter.
- At the end of winter, follow up to see whether they contracted flu.

Let

$$X_i = \begin{cases} 1 & \text{if shot effective (no flu)} \\ 0 & \text{if ineffective (contracted flu)} \end{cases}$$

- ► Suppose the 20th individual was unavailable for followup.

A Simple Gibbs Example

▶ If θ is the probability the shot is effective, then

$$p(y|\theta) = \binom{19}{y} \theta^y (1-\theta)^{19-y}$$

▶ If we had the complete data (for Y and X_{20}), then

$$p(\theta|y,x_{20}) = {20 \choose y + x_{20}} \theta^{y+x_{20}} (1-\theta)^{20-y-x_{20}}$$

▶ If we put in "temporary" values θ^* and x_{20}^* for the unknown quantities, then

$$\theta|X_{20}^*,Y\sim \mathsf{beta}(Y+X_{20}^*+1,20-Y-X_{20}^*+1)$$
 and $X_{20}|Y,\theta^*\sim \mathsf{Bernoulli}(\theta^*)$

A Simple Gibbs Example

- We can repeatedly sample from these "full conditional" distributions and eventually get a sample from the joint distribution of (θ, X_{20}) .
- ▶ See R example with data.

Example 3: (Coal Mining Disasters)

- ► Gill gives yearly counts of British coal mine disasters, 1851-1962.
- Relatively large counts in the early era, small counts in the later years.
- ▶ Question: When did the mean of the process change?
- ▶ We model the data using two Poisson distributions:
- "Early" data: $X_1, \ldots, X_k | \lambda \stackrel{\mathsf{iid}}{\sim} \mathsf{Pois}(\lambda), \;\; i = 1, \ldots, k$
- "Later" data: $X_{k+1}, \ldots, X_n | \phi \stackrel{\text{iid}}{\sim} \mathsf{Pois}(\phi), \quad i = k+1, \ldots, n$
- We must estimate each Poisson mean, λ and ϕ , and **also** the "changepoint" k.

Consider the priors:

$$\lambda \sim \mathsf{gamma}(\alpha, \beta)$$
 $\phi \sim \mathsf{gamma}(\gamma, \delta)$ $k \sim \mathsf{discrete}$ uniform on $\{1, 2, \dots, n\}$

▶ If we believe the mean annual disaster count for early years is \approx 4 and for later years is \approx 0.5, let $\alpha=$ 4, $\beta=$ 1, $\gamma=$ 1, $\delta=$ 2 be the hyperparameters.

Then the posterior is $\pi(\lambda, \phi, k|\mathbf{x})$

$$\propto L(\lambda, \phi, k|\mathbf{x})p(\lambda)p(\phi)p(k)
= \left[\prod_{i=1}^{k} \frac{e^{-\lambda}\lambda^{x_i}}{x_i!}\right] \left[\prod_{i=k+1}^{n} \frac{e^{-\phi}\phi^{x_i}}{x_i!}\right] \left[\frac{\beta^{\alpha}}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}\right] \left[\frac{\delta^{\gamma}}{\Gamma(\gamma)}\phi^{\gamma-1}e^{-\delta\phi}\right] \left[\frac{1}{n}\right]
\propto e^{-k\lambda}\lambda^{\sum_{i=1}^{k} x_i} e^{-(n-k)\phi}\phi^{\sum_{i=1}^{n} x_i}\lambda^{\alpha-1}e^{-\beta\lambda}\phi^{\gamma-1}e^{-\delta\phi}$$

$$=\lambda^{\alpha+\sum\limits_{i=1}^kx_i-1}e^{-(\beta+k)\lambda}\phi^{\gamma+\sum\limits_{k=1}^nx_i-1}e^{-(\delta+n-k)\phi}$$

So full conditionals are:

$$\lambda | \phi, k \sim \operatorname{gamma}(\alpha + \sum_{i=1}^{k} x_i, \beta + k)$$

$$\phi | \lambda, k \sim \operatorname{gamma}(\gamma + \sum_{i=k+1}^{n} x_i, \delta + n - k)$$

To get the full conditional for k, note the joint density of the data is:

$$p(\mathbf{x}|k,\lambda,\phi) = \left[\prod_{i=1}^{k} \frac{e^{-\lambda} \lambda^{x_i}}{x_i!}\right] \left[\prod_{i=k+1}^{n} \frac{e^{-\phi} \phi^{x_i}}{x_i!}\right]$$

$$= \left[\prod_{i=1}^{n} \frac{1}{x_i!}\right] e^{k(\phi-\lambda)} e^{-n\phi} \lambda^{\sum_{i=1}^{k} x_i} \left[\prod_{i=k+1}^{n} \phi^{x_i}\right] \left[\prod_{i=1}^{k} \phi^{X_i} \frac{\phi^{x_i}}{\phi^{\sum_{i=1}^{k} x_i}}\right]$$

$$= \left[\prod_{i=1}^{n} \frac{e^{-\phi} \phi^{x_i}}{x_i!}\right] \left[e^{k(\phi-\lambda)} \left(\frac{\lambda}{\phi}\right)^{\sum_{i=1}^{k} x_i}\right]$$

$$= f(\mathbf{x}, \phi) g(\mathbf{x}|k)$$

By Bayes' Law, for any particular value k^* of k,

$$p(k^*|\mathbf{x}) = \frac{f(\mathbf{x}, \phi)g(\mathbf{x}|k^*)p(k^*)}{\sum\limits_{k=1}^{n} f(\mathbf{x}, \phi)g(\mathbf{x}|k)p(k)}$$

Since p(k) = 1/n (constant), we have

$$p(k^*|\mathbf{x}) = p(k^*|\mathbf{x}, \lambda, \phi) \propto \frac{g(\mathbf{x}|k^*)}{\sum_{k=1}^{n} g(\mathbf{x}|k)}$$

(full conditional for k)

- ▶ This ratio defines a probability vector for k that we use at each iteration to sample a value of k from $\{1, 2, ..., n\}$.
- see R example (Coal mining data)