
Metropolis-Hastings Example

Example 5 (Sparrow data): We gather data on a sample of 52
sparrows:

Xi = age of sparrow (to nearest year)

Yi = Number of offspring that season

I We expect that the offspring number rises and then falls with
age, so we assume a quadratic trend.

I We model the number of offspring at a given age x as Poisson:

Y |x ∼ Pois(µx)



Metropolis-Hastings Example

I Since we know µx must be positive, we use the model:

E [Y |x ] = eβ0+β1x+β2x2

I This Poisson regression model is a generalized linear model
(GLM).

I Our parameter of interest is β = (β0, β1, β2).

I But note that conjugate priors do not exist for non-normal
GLMs.

I We will use the M-H algorithm to sample from our posterior.



Metropolis-Hastings Example

I Let the prior on β be multivariate normal with independent
components:

β ∼ MVN(0,Σ), where Σ = 100× I3

I We will choose our proposal density to be multivariate
normal with mean vector β[t] (the current value).

I The covariance matrix of the proposal density is sort of a
tuning parameter. We will choose

σ̂2(X
′
X)−1 where σ̂2 = var{ln(y1 + 0.5), . . . , ln(yn + 0.5)}.

I We can adjust this if our acceptance rate is too high or too
low.

I Usually we like an acceptance rate between 20% and 50%.



Metropolis-Hastings Example

I Since our proposal density is symmetric, our acceptance ratio
is simply

π(β∗)

π(β[t])
=

L(β∗|X, y)p(β∗)

L(β[t]|X, y)p(β[t])

=

n∏
i=1

dpois(yi , exp[xT
i β∗])

3∏
j=1

dnorm(β∗j , 0, 10)

n∏
i=1

dpois(yi , exp[xT
i β[t]])

3∏
j=1

dnorm(β
[t]
j , 0, 10)

where the Poisson density dpois and the normal density
dnorm can be found easily in R.

I See R example with real sparrow data.



Other Metropolis-Hastings Issues

I In practice, it is recommended to check the acceptance rate
(the proportion of proposed β∗ values that are “accepted”).

I We also check the serial correlation of the
{

β
[t]
j

}
values using

a plot of the autocorrelation function.

I If the values do not “appear” independent, we can alleviate
this by choosing every k th value in the chain as our posterior
sample (thinning).



CHAPTER 6(b) SLIDES START HERE



Checking Model Adequacy

I Checking the adequacy of a Bayesian model involves:

1. determining how sensitive the posterior is to the specification
of the prior and the likelihood

2. checking that the values we obtain in our sample fit those we
would expect to see, given our posterior knowledge

3. checking robustness to individual data values



Sensitivity Analysis

I Checking the sensitivity to the specification of the data
model/likelihood should be done regularly, but rarely is.

I We might examine the effect on the posterior of choosing
related data models (e.g., Poisson vs. negative binomial for
count data).

I Far more often, we check the sensitivity of the posterior to the
prior specification.

I Assume Poisson(θ1) and Poisson(θ2) models for the data.
I We might ask: What happens to the posterior when we:

1. change the functional form of the prior?
2. keep the same form, but change the parameter(s) of the prior?

I If the posterior is robust to such changes in the prior, we may
be more comfortable with the posterior inferences we make.



Sensitivity Analysis

Example 1(a): Consider X1, . . . ,Xn
iid∼ N(µ, σ2) with σ2 known.

I The conjugate prior for µ is µ ∼ N(δ, τ2).

I A noninformative prior for µ is p(µ) = 1.

I Another choice of prior for µ might be a t-distribution
centered at δ.

I How would the posterior change for these 3 prior choices?

I We could examine (1) plots of the posterior in each case, or
(2) several posterior quantiles in each case.

I See WinBUGS example with Kenya lead data.


