Posterior Predictive Distribution in Regression

Example 3: In the regression setting, we have shown that the
posterior predictive distribution for a new response vector y* is
multivariate-t.

» To check model fit, we can generate samples from the
posterior predictive distribution (letting X* = the observed
sample X) and plot the values against the y-values from the
original sample.

» If an observed y; falls far from the center of the posterior
predictive distribution, this i-th observation is an outlier.

» If this occurs for many y-values, we would doubt the
adequacy of the model.

» See R example (small automobile data set).



Posterior Predictive Distribution in Regression

» We can also make predictions and “prediction intervals” for
new responses with specified predictor values.

» For example, consider a new observation with predictor
variable values in the vector x* = (1, x{,x3,...,x;_;) (or the
predictor values for several new observations could be
contained in the matrix X*).

» We can generate the posterior predictive distribution with X*
and compute the posterior median (for a point prediction) or
posterior quantiles (for a prediction interval).

» See R example.



CHAPTER 7 SLIDES START HERE



Issues with Classical Hypothesis Testing

» Recall that classical hypothesis testing emphasizes the
p-value: The probability (under Hp) that a test statistic
would take a value as (or more) favorable to H, as the
observed value of this test statistic.

» For example, given iid data x = xi, ..., x, from f(x|0), where
—00 < 6 < 00, we might test Hy : 0 <0 vs. Hy: 60 > 0 using
some test statistic T(X) (a function of the data).

» Then if we calculated T(x) = T* for our observed data x, the
p-value would be:

p-value = P[T(X) > T*|0 = 0]
:/fT(tye — 0)dt
T*

where f(t|0) is the distribution (density) of T(X).
D



Issues with Classical Hypothesis Testing

» This p-value is an average over T values (and thus sample
values) that have not occurred and are unlikely to occur.

» Since the inference is based on “hypothetical” data rather
than only the observed data, it violates the Likelihood
Principle.

» Also, the idea of conducting many repeated tests that
motivate “Type | error” and “Type Il error” probabilities is
not sensible in situations where our study is not repeatable.



The Bayesian Approach

» A simple approach to testing finds the posterior probabilities
that @ falls in the null and alternative regions.

» We first consider one-sided tests about 6 of the form:
Hy:0<c vs. Hy;:0>c

for some constant ¢, where —oco < 6 < oc.
» We may specify prior probabilities for 6 such that

po = P[—00 < 0 < c] = P[0 € O]

and
plzlfpo:P[C<0<OO]:P[9¢@0]

where Qg is the set of #-values such that Hy is true.



The Bayesian Approach

» Then the posterior probability that Hy is true is:

C

P[0 € ©g|x] = / p(0|x) d6

J p(xi0)pod

c oo

_f p(x|6)po db + [ p(x|6)p1 df

Cc

by Bayes' Law (note the denominator is the marginal
distribution of X).



The Bayesian Approach

» Commonly, we might choose an uninformative prior
specification in which pp = p; = 1/2, in which case
P[6 € ©¢|x] simplifies to

_f p(x|6)po df _fc p(x|6) df

o0 &%)

| p(xl0)podt [ p(x|6)do



Hypothesis Testing Example

» Example 1 (Coal mining strike data): Let Y = number of
strikes in a sequence of strikes before the cessation of the
series.

» Gill lists Y1,..., Y11 for 11 such sequences in France.

» The Poisson model would be natural, but for these data, the
variance greatly exceeds the mean.

» We choose a geometric(6) model
fyl0) = 0(1 - 0)”

where @ is the probability of cessation of the strike sequence,
and y;= number of strikes before cessation.

» Exercise: Show that the Jeffreys prior for 6 is
p(6) = 6=1(1 — #)~ /2. We will use this as our prior.



Hypothesis Testing Example

» So the posterior is:

m(0]y) oc L(0]y)p(0)
= 0"(1—0)=Y91(1 - 9)"1/2
— enfl(l - 9)2)’/'*1/2

which is a beta(n, > y; + 1/2) distribution.

» We will test Hy : 6 < 0.05 vs. H;: 60 > 0.05.
0.05
» Then P[0 < 0.05]y] = | =(fly)dd, which is the area to the
0
left of 0.05 in the beta(n, > y; + 1/2) density.

» This can be found directly (or via Monte Carlo methods).

» See R example with coal mining strike data.



