Describing Distributions with Numbers

- Using graphs, we could determine the *center*, *spread*, and *shape* of the distribution of a quantitative variable.
- We can also use numbers (called summary statistics) to describe the center, spread, and shape of the distribution of a quantitative variable.
- Example 1: Barry Bonds vs. Hank Aaron (baseball home run kings)
- Consider two data sets: Yearly home run counts for Barry Bonds (1986-2007) and yearly home run counts for Hank Aaron (1954-1976).
- How can we characterize the center, spread, and shape of these two data sets?

Histograms of Home Run Data

- What is the rough *midpoint* of Bonds' home run distribution?
- How can we describe the spread of Bonds' home run distribution?
- How do these compare to the corresponding characteristics of Aaron's distribution?
- Now let's examine some more precise numerical measures of center and spread.

Histogram of Bonds yearly home run values:

Figure 1: Barry Bonds' yearly home run totals (1986-2007).

Histogram of Aaron yearly home run values:

Figure 2: Hank Aaron's yearly home run totals (1954-1976).

The Median: A Measure of Center

- ullet The median (denoted M) of a data set is a numerical measure of the midpoint.
- ullet The number of data values *less than* M is always the same as the number of data values *greater than* M.
- To find the median of a data set, we first order the data from smallest to largest.
- Example: Bonds data (ordered from smallest to largest):

5 16 19 24 25 25 26 28 33 33 34 34 37 37 40 42 45 45 46 46 49 73

Finding The Median (Continued)

- ullet Once the data are ordered, use the "n-plus-1 over 2" rule!
- ullet Find $rac{n+1}{2}$ (Remember $oldsymbol{n}$ = the overall number of data values).
- This will tell you the position of the median in the ordered data set.
- ullet If n is odd, then the median is an actual data value (the one in position $\frac{n+1}{2}$ in the ordered data set).
- If n is even, then $\frac{n+1}{2}$ is not a whole number, and so the median will be halfway between two data values.

Clicker Quiz 1

In the Aaron data set, there are 23 observations. Using the "n-plus-1 over 2" rule, what is the position of the median in the ordered data set?

- A. Halfway between 11th and 12th
- B. Halfway between 12th and 13th
- C. 12th
- **D.** 23rd

Clicker Quiz 2

In the Bonds data set, there are 22 observations. Using the "n-plus-1 over 2" rule, what is the position of the median in the ordered data set?

- A. 11th
- B. Halfway between 11th and 12th
- **C.** 12th
- **D. 22nd**

Examples of Finding Medians

Aaron data set (in order):

10 12 13 20 24 26 27 29 30 32 34 34 38 39 39 40 40 44 44 44 44 45 47

- Since n = 23, $\frac{n+1}{2} = 12$.
- The 12th value in the ordered data set is 34, so the median of this data set is 34.

Examples of Finding Medians (Continued)

Bonds data set (in order):

5 16 19 24 25 25 26 28 33 33 34 34 37 37 40 42 45 45 46 46 49 73

- Since n=22, $\frac{n+1}{2}=11.5$.
- The 11th value in the ordered data set is 34, and the 12th value in the ordered data set is also 34!
- So the median of this data set is 34 (halfway between 34 and 34).

Examples of Finding Medians (Continued Once More)

Babe Ruth data set (in order):

0 2 3 4 6 11 22 25 29 34 35 41 41 46 46 46 47 49 54 54 59 60

- ullet Since again $oldsymbol{n}=22$, $rac{n+1}{2}=11.5$.
- The 11th value in the ordered data set is 35, and the 12th value in the ordered data set is 41
- So the median of the Ruth data set is 38 (halfway between 35 and 41).
- ullet For Aaron, M = 34. For Bonds, M = 34. For Ruth, M = 38. Conclusions?

Quartiles

- The median is essentially a number that divides the data set into halves.
- ullet The quartiles (denoted $Q_1,\,Q_2,\,Q_3$) are numbers that divide the data set into *quarters*.
- ullet Q_2 is simply the median.
- ullet Q_1 is the median of all the observations that are to the *left of the* position of the overall median M in the ordered data set.
- ullet Q_3 is the median of all the observations that are to the *right of the* position of the overall median M in the ordered data set.

Examples of Finding Quartiles

Aaron data set (in order):

10 12 13 20 24 26 27 29 30 32 34 34 38 39 39 40 40 44 44 44 44 45 47

- Since n = 23, $\frac{n+1}{2} = 12$.
- The observations to the left of the 12th value in the ordered data set are simply the first 11 values.
- ullet The median of these first 11 values is 26 (check it!), so Q_1 = 26.
- The observations to the right of the 12th value in the ordered data set are simply the *last* 11 values.
- The median of these *last* 11 values is 44 (check it!), so Q_3 = 44.

Examples of Finding Medians (Continued)

Bonds data set (in order):

5 16 19 24 25 25 26 28 33 33 34 34 37 37 40 42 45 45 46 46 49 73

- The observations to the left of the 11.5 position in the ordered data set are simply the first 11 values.
- ullet The median of these first 11 values is 25 (check it!), so Q_1 = 25.
- The observations to the right of the 11.5 position in the ordered data set are simply the last 11 values.
- The median of these *last* 11 values is 45 (check it!), so Q_3 = 45.

The Five-Number Summary

- A lot of information about a distribution can be summarized in the 5-number summary.
- ullet This *5-number summary* consists of: The minimum value; Q_1 ; the median; Q_3 ; and the maximum value.
- Summarizes information about the center, the spread, and the tails of the distribution.
- The median describes the center of the distribution.
- ullet The distance between Q_1 and Q_3 describes the spread of the middle 50% of the data.
- The minimum and maximum give information about the "tails" and possible outliers.

Clicker Quiz 3

The 5-number summary for the Aaron data set is:

10 26 34 44 47.

The 5-number summary for the Bonds data set is:

5 25 34 45 73.

How could we accurately compare the two distributions?

- A. They have very different centers and spreads.
- B. The centers are the same, but the Aaron data set is somewhat more spread out.
- C. The centers are the same, but the Bonds data set is somewhat more spread out.
- D. The Aaron data set seems to have more outlying values.

Boxplots

- A boxplot is a graphical presentation of the 5-number summary.
- ullet The minimum value; Q_1 ; the median; Q_3 ; and the maximum value are plotted on one axis:
- ullet A box is drawn whose ends range from Q_1 to Q_3 .
- A line is drawn inside the box where the median is located.
- Lines extend outside the box to the smallest and largest values in the data set.
- Often multiple boxplots are placed in the same graph (using same axes) to compare multiple distributions (Bonds / Aaron example)

Boxplots of Bonds and Aaron yearly home run values:

A Measure of Spread: Interquartile Range

- ullet Recall the distance between Q_1 and Q_3 describes the spread of the middle 50% of the data.
- ullet This distance is simply Q_3-Q_1 , which we call the Interquartile Range (IQR) of the data set.
- The IQR is a numerical measure of the spread in a data set.
- Note that the IQR is simply the length of the "box" part of a boxplot.

Clicker Quiz 4

The 5-number summary for the Aaron data set is:

10 26 34 44 47.

The 5-number summary for the Bonds data set is:

5 25 34 45 73. What is the IQR of the Aaron data set?

- A. 37
- **B. 20**
- C. 34
- **D.** 18

Clicker Quiz 5

The 5-number summary for the Aaron data set is:

10 26 34 44 47.

The 5-number summary for the Bonds data set is:

5 25 34 45 73. What is the IQR of the Bonds data set?

- A. 68
- **B. 20**
- C. 34
- **D.** 18

More on Boxplots

- Some computer packages produce boxplots whose extra lines (or "whiskers") don't necessarily extend all the way to the minimum or maximum values.
- They may only extend to the "non-outlying values" and the outliers may be marked with separate symbols on the plot.
- Typically an observation is labeled an outlier if it lies more than $1.5 \times IQR$ above Q_3 or below Q_1 .
- ullet Example for Bonds data set: 1.5 imes IQR = ?

Even More on Boxplots

- A boxplot can indicate whether a distribution is symmetric or skewed.
- Does one half of the box extend farther out than the other half? Does one half of the overall boxplot extend farther out than the other half?
- It's typically easier to determine shape and symmetry/skewness using a histogram or a stemplot than a boxplot, though.
- Boxplots are good for quick summaries and comparisons of distributions.

Other Measures of Center and Spread: Mean, Variance and Standard Deviation

- The *mean* of the data set (denoted \bar{x}) is simply the sum of the observations divided by the total number of observations.
- Like the median, the mean is a measure of a data set's center.
- The *standard deviation* of a data set (denoted *s*) measures roughly how far each observation is from the mean, *on average*.
- Like the IQR, the standard deviation is a measure of a data set's spread.

Mean, Variance and Standard Deviation (Continued)

- If s is large, then the data set is very spread out. If s = 0, then all data values are the same (absolutely no spread!).
- The *variance* is the square of the standard deviation.
- Page 271 in book describes how to find the variance and standard deviation by hand (we won't do this).

Median or Mean?

- Which is a better measure of center, the median or the mean?
- An advantage of the mean: It uses the actual values of all the observations.
- A disadvantage of the mean: It is more affected by outliers.
- One outlying value can greatly affect the mean.
- An outlier won't affect the median as much the median is more robust to outliers.
- Similarly, the IQR is a more robust measure of spread than the standard deviation.

Median or Mean? (Example)

• Example: 2014-15 New York Knicks salaries (in millions): 0.1 0.3 0.5 0.5 0.5 0.7 0.9 1.0 1.3 1.6 3.2 3.3 7.1 12.0 22.5

- The mean salary is \$3.7 million; the median salary is \$1.0 million.
- Which is a better reflection of a "typical player's" salary?
- The mean is greatly affected by the outlier(s) at the "high end" of the salary values.

Median or Mean? (More)

- Usual rule: For skewed distributions or distributions with outliers, use median as a measure of center. (Examples: income data, house price data)
- For symmetric distributions, the mean and standard deviation are reasonable measures.
- NOTE: It's always good to look at a graph of the data, not just to rely on numerical measures alone!