Finding Probabilities for any Normal r.v.

Note: There are many different normal distributions (change μ and/or σ , get a different distribution).

• Changing μ shifts the distribution to the left or right.

M = -3

M=3 3

• Increasing of makes the normal distribution wider.

5>1

• Decreasing σ makes the normal distribution narrower.

0=1

5<1

So why so much emphasis on the standard normal?

Standardizing: If a r.v. X has a normal distribution with mean μ and standard deviation σ , then the standardized variable

$$Z = \underline{X - \mu}$$

Q

has a standard normal distribution.

So: We can convert <u>any</u> normal r.v. to a standard normal and then use Table II to find probabilities!

Example: Assume lengths of pregnancies are normally distributed with mean 266 days and standard deviation 16 days. M = 266, $\sigma = 16$

What proportion of pregnancies last less than 255 days?

$$X = pregnancy length$$
 $P(X < 255)$

Standardize:

$$X=255 \Rightarrow Z = \frac{255-266}{16} = -0.69$$

$$P(X < 255) = P(Z < -0.69) = .5 - .2549$$

= (.2451)

What is the probability that a random pregnancy will last between 260 and 280 days? $P(260 < \times < 280)$

$$X = 260 \Rightarrow Z = \frac{260 - 266}{16} = -0.38$$

$$X = 280 \Rightarrow Z = \frac{280 - 266}{16} = 0.88$$

$$P(260 < X < 280) = P(-0.38 < Z < 0.88)$$

$$= .1480 + .3106$$

We can also find the particular value of a normal r.v. that corresponds to a given proportion.

Example: Suppose the shortest tenth of pregnancies are classified as "unusually premature." What's the maximum pregnancy length that would be classified as

We need to "unstandardize" to get back to the X value (pregnancy length).

$$7 = \frac{X - A}{5} \Rightarrow -1.28 = \frac{X - 266}{16}$$

$$\Rightarrow (-1.28)(16) = X - 266$$

$$X = 266 - (1.28)(16)$$

$$X = 245.52 \text{ days}$$

General Rule: To unstandardize a z-value, use:

$$X = Z\sigma + \mu$$

More Normal Probabilities

Example: Suppose newborn babies' weights are normally distributed with mean 7.6 pounds and std.

deviation 1.1 pourds. $\chi = weight$ (in pounds)

• What proportion of babies are greater than 9 pounds at birth? $P(\chi > 9) = ?$

$$X=9 \Rightarrow Z=\frac{9-7.6}{1.1}=1.27$$

$$P(X>9) = P(Z>1.27) = .5 - .3980$$

• What is the probability that a randomly selected newborn is between 5 and 6 pounds?

$$P(5 < X < 6) = P(-2.36 < Z < -1.45)$$

$$X=5 \Rightarrow Z = \frac{5-7.6}{1.1} = -2.36 = .4909 - .4265$$

$$X=6 \Rightarrow Z = \frac{6-7.6}{1.1} = -1.45 = 0.0644$$

$$= .4909 - .4265$$
 $= .0644$

• The middle 75% of babies' weights are between what

- The normal model is not appropriate for every data set.
- It tends to give a decent approximation to the behavior of many variables observed in nature.
- Why? Many natural phenomena are in fact the sum total of lots of different factors that act independently to produce the final value.
- We will see that the normal distribution can be theoretically justified as a model for the sum of many independent quantities.

Normal Approximation to the Binomial

The normal distribution is very powerful --- can be used to approximate probabilities for r.v.'s that are not normal.

Calculating binomial probabilities using Table I: doesn't cover all values of n (only 5-10, 15, 20, 25)

Using the binomial probability formula can be tedious for large n.

Fortunately, when n is large, the binomial distribution closely resembles the normal distribution with mean np and standard deviation \sqrt{npq} .

Rule of Thumb: When can this normal approximation be applied?

When
$$np-3\sqrt{npq} \ge 0$$
 and $np+3\sqrt{npq} \le n$

Continuity Correction: Since the normal is a continuous distribution and the binomial distribution a discrete distribution, an adjustment of 0.5 is usually made to the value of interest.

Example: A hotel has found that 5 percent of its guests will steal towels. If there are 220 rooms with guests in a hotel on a certain night, what is the probability that at least 20 of the rooms will need the towels replaced?

$$N = 220$$
, $p = .05$, $q = .95$ $X = \# rooms$ needing, towels replaced Check: $np = 220(.05) = 11$ $\Rightarrow 11 - 3(3.23) = 1.31 \ge 0$ $\sqrt{npq} = \sqrt{(220)(.05)(.95)} = 3.23 \Rightarrow 11 + 3(3.23) = 20.69 \le 220$

$$P(X \ge 20) \approx P(X^* > 19.5)$$
where X^* is normal with mean 11 and std.dev. 3.23. $P(Z > 2.63) \approx .0043$

$$X^* = 19.5 \Rightarrow Z = \frac{19.5 - 11}{3.23} = 2.63$$

$$0 \quad 2.63$$

What is the probability that between 10 and 20 rooms will need towels replaced?

P(
$$10 \le X \le 20$$
)
 $\approx P(9.5 \le X^* \le 20.5)$
X* is normal with mean II
and std. dev. 3.23.

$$X^* = 9.5 \implies Z = \frac{9.5 - 11}{3.23} = -0.46$$

 $X^* = 20.5 \implies Z = \frac{20.5 - 11}{3.23} = 2.94$

$$P(-0.46 < Z < 2.94)$$

$$= .1772 + .4984$$

$$= [.6756]$$

The Exponential Distribution

Often, a waiting time (a continuous and positive r.v.) can be modeled with an exponential distribution:

pdf:
$$f(x) = \frac{1}{\theta} e^{-x/\theta}$$
 for $x > 0$ and $\theta > 0$

 \bullet Here, θ is the mean of the exponential distribution.

For example, suppose an exponential r.v. X is the waiting time (in days) between accidents at a plant. Then θ is the expected waiting time between accidents.

The mean waiting time is $\mu = E(X) = \theta$

The variance is $\theta^2 \rightarrow \text{Standard deviation} = \Theta$

Example: Suppose that the waiting time between accidents at a plant follows an exponential distribution with mean 20. $-\alpha/\theta$

In general: P(X > a) = C

Picture:
$$P(X \le a)$$

$$= 1 - e^{-a/\theta}$$

What is the probability that the time between the next two accidents will be less than 10? Note: $\theta = 20$, here.

Solution:
$$P(X < 10) = | -P(X \ge 10)$$

= $| -e^{-10/20}$
= $| -e^{-0.5} = [.3935]$

Example: If the time to failure for an electrical component follows an exponential distribution with a mean failure time of 1000 hours. What is the probability that a randomly chosen component will fail before 750 hours?

before 750 hours?
$$\times \sim \exp(0) = 1000$$

 $P(X < 750) = 1 - P(X \ge 750)$
 $= 1 - e^{-750/000}$
 $= 1 - e^{-0.75} = [.5276]$

750

Relationship between Exponential and Poisson r.v.'s

- Suppose the Poisson distribution is used to model the probability of a specific number of events occurring in a particular interval of time or space.
- Then the time or space between events is an exponential random variable.

Why? Suppose we have a Poisson distribution with mean λt , where t is a particular length of time.

What is the probability that no events will occur before time t?

 $P[X=0] = \frac{e^{-\lambda t}(\lambda t)^{0}}{0!} = e^{-\lambda t}$

Note: This situation implies that the waiting time Tbefore the next event is more than t.

Therefore $P[T>t] = e^{-\lambda t} = e^{-t/\theta}$ where $\lambda = \frac{1}{\theta}$

And so T must follow an exponential distribution with mean $\theta = 1/\lambda$.

Example: Suppose the number of machine failures in a given interval of time follows a Poisson distribution with an average of 1 failure per 1000 hours.
$$\Rightarrow \lambda = \frac{1}{1000}$$

waiting T is expon
$$(\theta = 1000)$$

What is the probability that there will be no failures during the next 2000 hours?

$$P(T > 2000) = e^{-2000/1000}$$

$$= e^{-2} = [.1353]$$

What is the probability that the time until the next failure is between 2000 and 2200 hours?

$$P[2000 \le T \le 2200]$$

$$= P[T \ge 2000] - P[T \ge 2200]$$

$$= \frac{-2000/1000}{-e} - \frac{-2200/1000}{-e} = \frac{-2.2}{-e} = \boxed{.0245}$$

What is the probability that more than 2500 hours will pass before the next failure occurs?

$$P[T > 2500]$$

$$= e^{-2500/1000} = e^{-2.5} = [.0821]$$