STAT 515 -- Chapter 7: Confidence Intervals

* With a point estimate, we used a single number to
estimate a parameter.

* We can also use a set of numbers to serve as
“reasonable” estimates for the parameter.

Example: Assume we have a sample of size 100 from a
population with ¢ = 0.1.
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Confidence Interval: An interval (along with a level of
confidence) used to estimate a parameter.

* Values in the interval are considered “reasonable”
values for the parameter.

Confidence level: The percentage of all CIs (if we took
many samples, each time computing the CI) that
contain the true parameter.

Note: The endpoints of the CI are statistics, calculated
from sample data. (The endpoints are random, not the
parameter!)

In general, if X is normally distributed, then in
100(1 — a)% of samples, the interval
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Problem: We typically do not know the parameter o.
We must use its estimate s instead.

Formula: CI for pu (when o is unknown)
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Since s/In has a t-distribution with » — 1 d.f., our
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where t,,, = the value in the t-distribution (n — 1 d.f.)
with a/2 area to the right:

e This is valid if the data come from a normal

distribution.
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Example: We want to estimate the mean weight p of

trout in a lake. We catch a sample of 9 trout. Samplecoul | check
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Question: What does 95% confidence mean here,

exactly?

o If we took many samples and computed many 95%

CIs, then about 95% of them would contain p.

The fact that (2 31, 4. 17) contains p “with 95%

confidence” implies the method used would capture p
95% of the time, if we did this over many samples.
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A WRONG statement: “There is .95 probability that p
is between 2.81 and 4.19.” Wrong! u is not random — p
doesn’t change from sample to sample. It’s either

between 2.81 and 4.19 or it’s not.



Interpreting a 95% Confidence Interval:
TRUE or FALSE?

(1) 95% of all trout have weights between 2.81 and 4.19
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(2) 95% of samples have X between 2.81 and 4.19.
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(3) 95% of samples will produce intervals that contain
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(4) 95% of the time, . is between 2.81 and 4.19.
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(5) The probability that p falls within a 95% CI is 0.95.
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(6) The probability that u falls between 2.81 and 4.19 is
0.95.
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|~ = .99, «=.01 % = L0055
Level of Confidence

Recall example: 95% CI for p was (2.81, 4.19).
* For a 90% CI, we use t s (8 d.f.) = 1.86. Tob e TIC
For a 99% CI, we use t s (8 d.f.) = 3.355.
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959 ¢TI = (2.81,4.19)

99%CL: 3.5 * (3.355)/ 0.9\ _ [, =
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Note tradeoff: If we want a higher confidence level,
then the interval gets wider (less precise).

Confidence Interval for a Proportion

* We want to know how much of a population has a
certain characteristic.

* The proportion (always between 0 and 1) of
individuals with a characteristic is the same as the
probability of a random individual having the
characteristic.

Estimating proportion is equivalent to estimating the
binomial probability p.

Point estimate of p is the sample proportion:
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. X
Note 7 = " is a type of sample average (of 0’s and 1’s),

so CLT tells us that when sample size is large, sampling
distribution of 7 is approximately normal.
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For large n:

100(1 — a)% CI for p is:
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How large does n need to be?
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Example 1: A student government candidate wants to
know the proportion of students who support her. She
takes a random sample of 93 students, and 47 of those
support her. Find a 90% CI for the true proportion.
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Example 2: We wish to estimate the probability that a
randomly selected part in a shipment will be defective.
Take a random sample of 79 parts, and find 4 defective
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parts. Find a 95% CI for p. n="79
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Confidence Interval for the Variance ¢* (or for s.d. o)

Recall that if the data are normally distributed,
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This can be used to develop a (1 — a)100% CI for o”:

(ﬂ—l)gl (n—l)SL

) %?.
/X“/Z__ < [~ ~_ (h"l) a{.@

o Example: Trout data example (assume data are normal
“&iva _—how to check this?) s = 0.9 pounds, so s* = ( 0.9)°= 0.8
plot R = 9. Find 95% CI for o°.
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Also, a CI for the ratio of two variances, —
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found by the formula:
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Example: If we have a second sample of 13 trout with
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Sample Size Determination /

Note that the bound (or margin of error) BV of a CI { Z bt M
equals half its width. o P )

For the CI for the mean (with o known), this is:
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For the CI for the proportion, th_ig is:
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Note: When the sample size » is bigger, the CI is
narrower (more precise).

We often want to determine what sample size we need
to achieve a pre-specified margin of error and level of
confidence. Solving for n:
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Note: Always round » up to the next largest integer.

These formulas involve G, p and ¢, which are usually
unknown in practice. We typically guess them based on
prior knowledge — often we use p = 0.5, ¢ = 0.5.
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Example 1: How many patients do we need for a blood
pressure study? We want a 90% CI for mean systolic
blood pressure reduction, with a margin of error of 5
mmig. We believe that c = 10 mmHg.
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Example 3: Pollsters want a 95% CI for the proportion

of voters supporting President Obama.” They want a
3% margin of error (B =.03). What sample size do they

need? | — x = IS D x=.05 = % = .025
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