STAT 515 -- Chapter 8: Hypothesis Tests

- CIs are possibly the most useful forms of inference because they give a <u>range</u> of "reasonable" values for a parameter.
- But sometimes we want to know whether <u>one</u> <u>particular value</u> for a parameter is "reasonable."
- In this case, a popular form of inference is the hypothesis test.

We use data to test a <u>claim</u> (about a parameter) called the <u>null hypothesis</u>.

Example 1: We claim the proportion of USC students who travel home for Christmas is 0.95.

Example 2: We claim the mean nightly hotel price for hotels in SC is no more than \$65.

- Null hypothesis (denoted H₀) often represents "status quo", "previous belief" or "no effect".
- Alternative hypothesis (denoted H_a) is usually what we seek evidence for.

We will reject H₀ and conclude H_a if the data provide convincing evidence that H_a is true.

Evidence in the data is measured by a test statistic.

A test statistic measures how far away the corresponding sample statistic is from the parameter value(s) specified by H_0 .

If the sample statistic is extremely far from the value(s) in H_0 , we say the test statistic falls in the "rejection region" and we reject H_0 in favor of H_a .

Example 2: We assumed the mean nightly hotel price in SC is no more than \$65, but we seek evidence that the mean price is actually greater than \$65. We randomly sample 64 hotels and calculate the sample mean price

$$\overline{X}$$
. Let $Z = \frac{\overline{X} - 65}{\sigma / \sqrt{n}}$ be our "test statistic" here.

Note: If this Z value is much bigger than zero, then we have evidence against H_0 : $\mu \le 65$ and in favor of H_a : $\mu > 65$.

Suppose we'll reject H_0 if Z > 1.645.

If μ really is 65, then Z has a standard normal distribution. (Why?) $\overline{\chi} \sim N(65, \frac{\sigma}{\sqrt{64}})$ by the Picture:

If we reject H_0 whenever Z > 1.645, what is the probability we reject H₀ when H₀ really is true?

$$P(Z > 1.645 | \mu = 65) = [.05]$$

This is the probability of making a Type I error (rejecting H₀ when it is actually true).

P(Type I error) = "level of significance" of the test (denoted α).

We don't want to make a Type I error very often, so we Common choices of x; choose α to be small: .01, .05, .10.

The \alpha we choose will determine our rejection region (determines how strong the sample evidence must be to reject H₀).

In the previous example, if we choose $\alpha = .05$, then Z > 1.645 is our rejection region.

If we had chosen $\alpha = .01$,

0

Hypothesis Tests of the Population Mean

In practice, we don't know σ , so we don't use the Z-statistic for our tests about μ .

Use the t-statistic: $t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$, where μ_0 is the value in the null hypothesis.

This has a t-distribution (with n-1 d.f.) if H_0 is true (if μ really equals μ_0).

Example 2: Hotel prices:
$$H_0: \mu = 65$$
 $H_a: \mu > 65$
 $t = \frac{\overline{X} - 65}{5/\sqrt{n}}$

Sample 64 hotels, get $\overline{X} = ^{\$}67$ and $s = ^{\$}10$. Let's set $\alpha = .05$.

Reject H_0 if t is bigger than 1.67.

Conclusion:
$$t = \frac{67-65}{10/\sqrt{64}} = \frac{2}{1.25} = 1.60$$

 $t = 1.60 < 1.67$, so we do not have strong on ough evidence to reject the.

We never accept H₀; we simply "fail to reject" H₀.

This example is a <u>one-tailed test</u>, since the rejection region was in one tail of the t-distribution.

Only very <u>large</u> values of t provided evidence against H₀ and for H_a.

Suppose we had sought evidence that the mean price was less than \$72. The hypotheses would have been:

$$H_0$$
: $\mu = 72$
 H_a : $\mu < 72$

Now very small values of $t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$ would be evidence against H₀ and for H_a.

Rejection region would be in left tail:

Rules for one-tailed tests about population mean

H₀:
$$\mu = \mu_0$$

H₀: $\mu = \mu_0$

H_a:
$$μ < μ_0$$

or

$$H_a$$
: $\mu > \mu_0$

Test statistic:

$$t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$$

test statistic

Rejection $t < -t_{r}$

$$t < -t_{\alpha}$$

$$t > t_{\alpha}$$

Region:

(where t_{α} is based on n-1 d.f.)

Lt-table value (from Table III)

Rules for two-tailed tests about population mean

H₀: $\mu = \mu_0$

 H_a : $\mu \neq \mu_0$

Test statistic:

$$t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$$

Reject Ho if

Rejection

 $t < -t_{\alpha/2} \text{ or } t > t_{\alpha/2} \text{ (both tails)}$

Region:

(where $t_{\alpha/2}$ is based on n-1 d.f.)

t (n-1) 0 -t «/2

Example: We want to test (using $\alpha = .05$) whether or not the true mean height of male USC students is 70 inches.

Ho: M=70 Ha: M = 70

Sample 26 male USC students. Sample data: $\overline{X} = 68.5$ inches, s = 3.3 inches.

$$\frac{\alpha}{2} = .025$$
 $t_{.025}$ (25 df) = 2.06 (Table III)
Reject Ho if $t < -2.06$ or $t > 2.06$.
 $t = \frac{68.5 - 70}{3.3/\sqrt{26}} = \frac{-1.5}{0.6472} = -2.31$

t=-2.31<-2.06, so we reject Ho. We conclude the population mean height of male USC students is not 70 inches.

Assumptions of t-test (and CI) about μ

- We assume the data come from a population that is approximately normal.
- If this is not true, our conclusions from the hypothesis test may not be accurate (and our true level of confidence for the CI may not be what we specify).
- How to check this assumption?

Q-Q plot, histogram

• The t-procedures are robust: If the data are "close" to normal, the t-test and t CIs will be quite reliable.

- If sample size is large, t-test and t CIs will generally be reliable (CLT)

Hypothesis Tests about a Population Proportion

We often wish to test whether a population proportion p equals a specified value.

Example 1: We suspect a theater is letting underage viewers into R-rated movies. Question: Is the proportion of R-rated movie viewers at this theater greater than 0.25?

We test:

$$H_0: P = 0.25$$

 $H_a: P > 0.25$

Recall: The sample proportion \hat{p} is approximately

$$\mathbf{N}\left(p,\sqrt{\frac{pq}{n}}\right)$$
 for large n , so our test statistic for testing

$$H_0: p = p_0$$

$$= \frac{\hat{p} - p_0}{\sqrt{p_0 q_0}}$$

has a standard normal distribution when H_0 is true (when p really is p_0).

Rules for one-tailed tests about population proportion

$$H_0: p = p_0$$

$$H_0: p = p_0$$

$$H_a: p < p_0$$

$$H_a: p > p_0$$

Test statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$$

Rejection $z < -z_{\alpha}$

$$z < -z_{\alpha}$$

$$z > z_{\alpha}$$

Region:

Rules for two-tailed tests about population proportion

$$H_0: p = p_0$$

$$H_a$$
: $p \neq p_0$

Test statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$$

>> Z> Z x/s

Rejection

Region:

$$(z < -z_{\alpha/2} \text{ or } z > z_{\alpha/2})$$
 (both tails)

Assumptions of test (need large sample):

Need:
$$p_0 - 3\sqrt{\frac{p_0 q_0}{p_0}} \ge 0$$

(Similar to the check for CI about P)

Alternatively, if npo ≥ 15 and ngo ≥ 15, the test is valid.

Example 1:

Test H_0 : p = 0.25 vs. H_a : p > 0.25 using $\alpha = .01$.

We randomly select 60 viewers of R-rated movies, and

23 of those are underage.

$$P_{0} = 0.25 \implies .25 - 3 \sqrt{\frac{(.25)(.75)}{60}} = .082 \ge 0$$

$$.25 + 3 \sqrt{\frac{(.25)(.75)}{60}} = .418 \le 1$$

$$P = \frac{23}{60} = .383$$

$$Rejection Region$$

$$Reject Ho if $Z > Z$.01
$$Reject Ho if $Z > Z$.01$$$$$$$$$$$$

Since z = 2.38 > 2.326, we reject the and conclude the population proportion of underage viewers is greater than 0.25. Example 1(a): What if we had wanted to test whether

the proportion of underage viewers was different from

0.25? Ho: p=0.25 vs. Ha: p = 0.25.

For the same data, Z = 2.38, still.

Note Zog = Z.005 = 2.576 (bottom row, t-table)

Reject Ho if Z<-2.576 or Z>2.576

Here 2.38 \$ 2.576, so we would have failed to reject Ho. There would not have been sufficient evidence to conclude that the true proportion of underage viewers is different from 0.25.