P-values

Recall that the significance level a is the desired
P(Type I error) that we specify before the test.

The P-value (or “observed significance level”) of a test
is the probability of observing as extreme (or more
extreme) of a value of the test statistic than we did
observe, if Hy was in fact true.

The P-value gives us an indication of the strength of
evidence against Hy (and for H,) in the sample.

This is a different (yet equivalent) way to decide
whether to reject the null hypothesis:

* A small p-value (less than o) = strong evidence against
the null => Reject Hy

* A large p-value (greater than a) = little evidence
against the null = Fail to reject Hy

How do we calculate the P-value? It depends on the
alternative hypothesis.



One-tailed tests
Alternative P-value
H,: “<?” Area to the left of the test statistic
value in the appropriate distribution
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Two-tailed test
Alternative P-value
H,: “#£” 2 times the “tail area” outside the

test statistic value in the appropriate
distribution (t or z). Double the tail
area to get the P-value!
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P-values for Previous Examples

Hotel Price Example: Ho: p=65 vs. H,: 4> 65

Test statistic value: * = |, & 0 (QB ‘J"(‘>
P-value = area 4o Hie rch of .60 in
L digtmibdion witle 63 4.1,

F—valu& ~ 00

N CH:) (cleﬁx‘m-}d7 bedwween OS5 oud .i0>
4 -

|
o |60

Recall o¢=.05.
evidence aﬂm\mﬁ' Ho

Se F—-\M-LLQ > X . TLlQ—“e'E)rQ "H«Q

1S blo—l_ S—h‘onj é_V\Du:“]L\. _,_D
r‘éj*f’—d' Hc .

Student height example: Hp: p =70 vs. H,: nw# 70

Test statistic value: t=-2.31 (25— d ‘Q>
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Movie theater example: Ho: p =0.25 vs. Ha: p > 0.25

Test statistic value: 2 - 7. 38
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Relationship between a CI and
a (two-sided) hvpothesis test:

* A test of Ho: p=m* vs. Ha: p# m* will reject Hy if and
only if a corresponding CI for p does not contain the
number m*.

Example: A 95% CI for pis (2.7, 5.5).
(1) Atoa=10.05, would we reject Ho: L =3 in favor of

Ha.: p#3?

(2) At o = 0.05, would we reject Ho: L =2 in favor of H,:
n#2?

(3) At o= 0.10, would we reject Ho: =2 in favor of H,:
n#2?

(4) At a =0.01, would we reject Ho: 1 =3 in favor of H,:
n#E3?
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Power of a Hypothesis Test

* Recall the significance level o is our desired
P(Type I error) = P(Reject Hy | Hy true)

The other type of‘ error in hypothesis testing:
Typellerror= [ | 4 rejedr He } HD ﬁmlSe,
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* High power is desirable, but we have little control over
it (different from o)
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Calculating Power: The power of a test about p
depends on several things: «, n, G, and the true p.

Example 1: Suppose we test whether the true mean

nicotine contents in a population of cigarettes is greater
than 1.5 mg, using o = 0.01.
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We take a random sample of 36 cigarettes. Suppose we
know ¢ = 0.20 mg. Our test statistic is
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We reject Hy if: 2 >%’0' = 2.326

X-15 X —[.5 > 0.0775
= > 2.32(, => >i i
°20ARL =, X > 1.5775

* Now, suppose L is actually 1.6 (implying that Hy is
false). Let’s calculate the power of our test if u = 1.6:

P(X >[.5775 =1.6 X —1.6 1.5775—J,¢,>
( > / . ) F<°6¢” > oo
P('—&? > ~0.68)

This is JllSt a normal probability problem!
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= Power whea m=)L6 1 7517
e What if the true mean were 1.65?
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* The farther the true mean is into the “alternative ~2'% ©
region,” the more likely we are to correctly reject Hy.




Example 2: Testing Ho: p = 0.9 vs. H,: p <0.9 at
o = 0.01 using a sample of size 225.

Suppose the true p is 0.8. Then our power is:



