P-values

Recall that the significance level α is the desired P(Type I error) that we specify before the test.

The P-value (or "observed significance level") of a test is the probability of observing as extreme (or more extreme) of a value of the test statistic than we did observe, if H_0 was in fact true.

The P-value gives us an indication of the <u>strength of</u> evidence against H_0 (and for H_a) in the sample.

This is a <u>different</u> (yet <u>equivalent</u>) way to decide whether to reject the null hypothesis:

- A small p-value (less than α) = strong evidence against the null => Reject H₀
- A large p-value (greater than α) = little evidence against the null => Fail to reject H_0

How do we calculate the P-value? It depends on the alternative hypothesis.

One-tailed tests

Alternative

H_a: " < "

for tests about

P-value

Area to the left of the test statistic value in the appropriate distribution

(t or z).

p-value

for tests about p

H_a: ">"

Area to the right of the test statistic value in the appropriate distribution (t or z).

Two-tailed test

Alternative

H_a: "≠"

P-value

2 times the "tail area" outside the test statistic value in the appropriate distribution (t or z). <u>Double</u> the tail area to get the P-value!

P-values for Previous Examples

Hotel Price Example: H_0 : $\mu = 65$ vs. H_a : $\mu > 65$

Test statistic value: t = 1.60 (63 d.f.)

P-value = area to the right of 1.60 in t distribution with 63 d.f.

P-value ~ .06 (definitely between .05 and .10)

Recall $\alpha = .05$. So P-value > α . Therefore the evidence against the is not strong enough to reject the.

Student height example: H_0 : $\mu = 70$ vs. H_a : $\mu \neq 70$

Test statistic value: t=-2.31 (25 d.f.)

P-value = Double the tail area outside -2.31

in a t-distribution with 25 d.f.

tail area $\approx .015$ (between .025 and .01) P-value $\approx 2(.015) = .03$

- Recall $\alpha = .05 \Rightarrow P$ -value $< \alpha$, so we have strong enough evidence to reject Ho.

Movie theater example: H_0 : p = 0.25 vs. H_a : p > 0.25

Test statistic value: 7 = 2.38

P-value is area to right of 2.38 in the std. normal (z) distribution:

From Z-table (Table II),

Tail area = .0087 = P-value

Using x = .01, our P-value < x.

We have strong evidence to reject Ho.

What if we had done a two-tailed test of H_0 : p = 0.25 vs. H_a : $p \neq 0.25$ at $\alpha = .01$?

P-value would have been double the tail area outside 2.38. P-value = 2(.0087) = .0174

In that case, P-value would have been > \pi, so we would not have to had strong enough evidence to reject Ho in the 2-tailed test.

Relationship between a CI and a (two-sided) hypothesis test:

• A test of H₀: $\mu = m^*$ vs. H_a: $\mu \neq m^*$ will reject H₀ if and only if a corresponding CI for μ does not contain the number m^* .

Example: A 95% CI for μ is (2.7, 5.5).

- (1) At $\alpha = 0.05$, would we reject H₀: $\mu = 3$ in favor of H_a: $\mu \neq 3$?
- (2) At $\alpha = 0.05$, would we reject H_0 : $\mu = 2$ in favor of H_a : $\mu \neq 2$?
- (3) At α = 0.10, would we reject H_0 : μ = 2 in favor of H_a : $\mu \neq$ 2?
- (4) At α = 0.01, would we reject H₀: μ = 3 in favor of H_a: $\mu \neq$ 3?

Power of a Hypothesis Test

• Recall the significance level α is our desired P(Type I error) = P(Reject $H_0 \mid H_0$ true)

The other type of error in hypothesis testing: Type II error = "Fail to reject Ho | Ho false" P(Type II error) = β = P(Fail to reject Ho | Ho false) The power of a test is P(Reject Ho | Ho false) = $1 - \beta$

• High power is desirable, but we have little control over it (different from α)

Calculating Power: The power of a test about μ depends on several things: α , n, σ , and the true μ .

Example 1: Suppose we test whether the true mean nicotine contents in a population of cigarettes is greater than 1.5 mg, using $\alpha = 0.01$.

$$H_0: \mu = 1.5$$
 $H_a: \mu > 1.5$

We take a random sample of 36 cigarettes. Suppose we know $\sigma = 0.20$ mg. Our test statistic is

$$Z = \frac{X - \mu_0}{\sqrt{5/n}} = \frac{X - 1.5}{0.20/\sqrt{36}}$$

We reject H_0 if: $Z > Z_{.01} = 2.326$

$$\Rightarrow \frac{\overline{X} - 1.5}{0.20/\sqrt{36}} > 2.326 \Rightarrow \overline{X} - 1.5 > 0.0775$$

$$\Rightarrow \overline{X} > 1.5775$$

• Now, suppose μ is actually 1.6 (implying that H_0 is false). Let's calculate the power of our test if $\mu = 1.6$:

$$P(\bar{X} > 1.5775 | \mu = 1.6) = P(\frac{\bar{X} - 1.6}{0.20/\sqrt{36}} > \frac{1.5775 - 1.6}{0.2/\sqrt{36}})$$

$$= P(\bar{Z} > -0.68)$$

This is just a normal probability problem!

$$P(Z > -0.68) = .7517$$

• What if the true mean were 1.65?

Verify:
$$P(X > 1.5775 | \mu = 1.65)$$

= $P(Z > -2.18) = .9854$

• The farther the true mean is into the "alternative -2.18 region," the more likely we are to correctly reject H_0 .

Example 2: Testing H₀: p = 0.9 vs. H_a: p < 0.9 at $\alpha = 0.01$ using a sample of size 225.

Suppose the true p is 0.8. Then our power is: