Assumptions of the ANOVA F-test:

• Again, most assumptions involve the εij's (the error terms).

(1) The model is correctly specified.

(2) The ε_{ij} 's are normally distributed.

(3) The ε_{ij} 's have mean zero and a common variance, σ^2 .

(4) The ε_{ij} 's are independent across observations.

• With multiple populations, detection of violations of these assumptions requires examining the residuals rather than the Y-values themselves.

• An estimate of ε_{ij} is: $\gamma_{ij} - \hat{\mu}_{i4}$ = Yii - Yi.

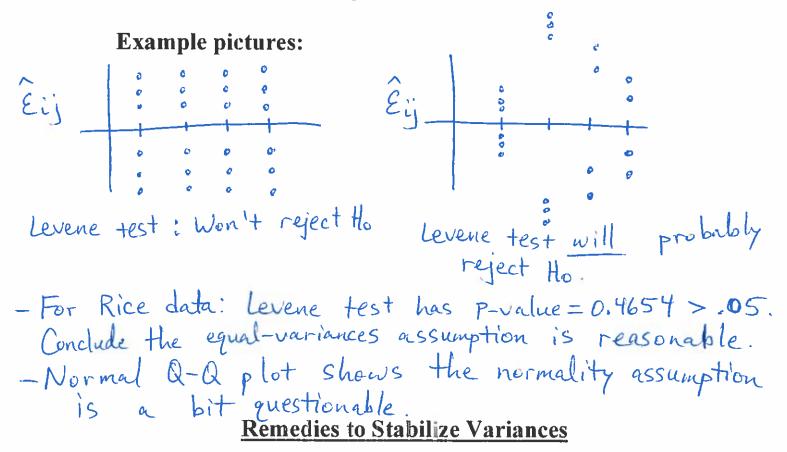
• Hence the residual for data value Y_{ij} is: $Y_{ij} - \overline{Y}_{i}$.

- We can check for non-normality or outliers using residual plots (and normal Q-Q plots) from the computer.
- Checking the equal-variance assumption may be done with a formal test:

 $H_0: \sigma_1^2 = \sigma_2^2 = ... = \sigma_r^2$

Ha: at least two variances are not equal

- The Levene test is a formal test for unequal variances that is robust to the normality assumption.
- It performs the ANOVA F-test on the absolute residuals from the sample data.



- If the <u>variances appear unequal</u> across populations, using transformed values of the response may remedy this. (Such transformations can also help with violations of the <u>normality assumption</u>.)
- The drawback is that interpretations of results may be less convenient.

Suggested transformations:

- If the standard deviations of the groups increase proportionally with the group means, try: $Y_{ij}^* = \log(Y_{ij})$
- If the variances of the groups increase proportionally with the group means, try: $Y_{ij}^* = \sqrt{Y_{ij}}$
- If the responses are proportions (or percentages), try: $Y_{ij}^* = \arcsin(\sqrt{Y_{ij}})$
- If none of these work, may need to use a nonparametric procedure (e.g., Kruskal-Wallis test).

Making Specific Comparisons Among Means

- \bullet If our F-test rejects H_0 and finds there are significant differences among the population means, we typically want more specific answers:
- (1) Is the mean response at a specified level superior to (or different from) the mean response at other levels?
- (2) Is there some natural grouping or separation among the factor level mean responses?
- Question (1) involves a "pre-planned" comparison and is tested using a contrast.
- Question (2) is a "post-hoc" comparison and is tested via a "Post-Hoc Multiple Comparisons" procedure.

Contrasts

 A contrast is a linear combination of the population means whose coefficients add up to zero.

Example (t = 4):
$$4\mu_1 + 7\mu_2 - 13\mu_3 + 2\mu_4$$

 Often a contrast is used to test some meaningful question about the mean responses.

Example (Rice data): Is the mean of variety 4 different from the mean of the other three varieties?

We are testing:
$$H_0: \frac{M_1 + M_2 + M_3}{3} = M_4$$

VS. $H_a: \frac{1}{3}M_1 + \frac{1}{3}M_2 + \frac{1}{3}M_3 \neq M_4$

What is the appropriate contrast?

$$L = \frac{1}{3}M_1 + \frac{1}{3}M_2 + \frac{1}{3}M_3 - M_4 \quad \left(\begin{array}{c} \text{coefficients} \\ \text{add to zero} \end{array}\right)$$

Now we test:
$$H_0: L = 0$$

 $H_a: L \neq 0$

We can estimate L by:

$$\hat{L} = \frac{1}{3} Y_{1.} + \frac{1}{3} Y_{2.} + \frac{1}{3} Y_{3.} - Y_{4.}$$

Under H₀, and with balanced data, the variance of a

contrast
$$\hat{L} = \alpha_1 \overline{Y}_1 + \cdots + \alpha_t \overline{Y}_t$$
.

is:

$$\operatorname{var}\left(\hat{L}\right) = \left(a_1^2 + \cdots + a_t^2\right) \frac{\sigma^2}{n}$$

- Also, when the data come from normal populations, L is normally distributed.
- Replacing σ^2 by its estimate MSW:

$$t^* = \frac{\hat{L}}{\sqrt{\hat{var}(\hat{L})}}$$

$$t^* = \frac{\hat{L}}{\sqrt{\hat{rar}(\hat{L})}}$$
 has a t-distribution under the with $df = t(n-1)$ (assuming $n_1 = \dots = n_t = n$)

- To test H_0 : L = 0, we compare t^* to the appropriate critical value in the t-distribution with t(n-1) d.f.
- Our software will perform these tests even if the data are unbalanced.

are unbalanced.
$$L = \frac{1}{3}M_1 + \frac{1}{3}M_2 + \frac{1}{3}M_3 - M_4$$

x=.05 Example: Test Ho: L=0 vs. Ha: L≠0

$$t^* = \frac{-166.0833}{37.221} = -4.46$$
 Compare | t^* | to $t_{.025}$ /12 df.) = 2.179

|t*|=4.46>2.179, and also P-value = .0008 < .05, so we reject the. Conclude mean yield for variety 4 differs from mean yield of other varieties.

Note: When testing multiple contrasts, the specified α

(= P{Type I error}) applies to each test individually, not to the series of tests collectively. H .: L = 0

Example 2: L= M1-M2 Ha: L+0

Post Hoc Multiple Comparisons

- When we specify a significance level α, we want to limit P{Type I error}.
- What if we are doing many simultaneous tests?
- Example: We have $\mu_1, \mu_2, ..., \mu_t$. We want to compare all pairs of population means.
- Comparisonwise error rate: The probability of a Type I error on each comparison.
- Experimentwise error rate: The probability that the simultaneous testing results in at least one Type I error.
- We only do post hoc multiple comparisons if the overall F-test indicates a difference among population means.

• If so, our question is: Exactly which means are different?

• We test: Ho: Mi = Mi for all i #j

- The Fisher LSD procedure performs a t-test for each pair of means (using a common estimate of σ^2 , MSW).
- The Fisher LSD procedure declares μ_i and μ_i significantly different if:

| Yi. - Yi. | > tay 2 MSW

If = within-groups d.f."

Lassuming balanced data

- Problem: Fisher LSD only controls the comparisonwise error rate.
- The experimentwise error rate may be much larger than our specified α .
- Tukey's Procedure controls the experimentwise error rate to be only equal to α .
- Tukey procedure declares μ_i and μ_j significantly different if:

 $|Y_{i}, -Y_{j}| > q_{x}(t, df) / \frac{MSW}{n}$ balanced data

• $q_{\alpha}(t, df)$ is a critical value based on the studentized range of sample means: $Q = \frac{\left(\overline{Y}_{m \times x} - \overline{Y}_{m \text{ in}}\right)}{\sqrt{M \times 1 / L}}$

• Tukey critical values are listed in Table A.7.

• Note: $q_{\alpha}(t, df)$ is larger than $\sqrt{2}$ $\left(t_{\alpha/2}\right)$

 \rightarrow Tukey procedure will declare a significant difference between two means $\frac{1.95}{}$ often than Fisher LSD.

- → Tukey procedure will have | ower experimentwise error rate, but Tukey will have | less | power than Fisher LSD.
- \rightarrow Tukey procedure is a <u>more</u> conservative test than Fisher LSD.

Some Specialized Multiple Comparison Procedures

- <u>Duncan multiple-range test</u>: An adjustment to Tukey's procedure that reduces its conservatism.
- <u>Dunnett's test</u>: For comparing several treatments to a "control".
- <u>Scheffe's procedure</u>: For testing "all possible contrasts" rather than just all possible pairs of means.

Notes: • When appropriate, preplanned comparisons are considered superior to post hoc comparisons (more power).

• Tukey's procedure can produce simultaneous CIs for all pairwise differences in means. Produces CIs for Example: Rice data:

Mi-Mj for all itility:

- isher LSD (using x=.05) declares:

Fisher LSD (using x=.05) declares:

M, and My are significantly different

M2 and M4

M3 and M4

""

M3

Tukey (using $\alpha = .05$) declares:

M2 and M4 are signif. different

M3 and M4 "

Picture of Tukey conclusions:

2 3 1
1928.25 938.5 984.5]

Random Effects Model

$$Y_{ij} = M_i + \epsilon_{ij}$$
, $i=1,...,t$, $j=1,...,n_i$
 $Y_{ij} = M + T_i + \epsilon_{ij}$

- If the *t* levels of our factor are the only levels of interest to us, then $\tau_1, \tau_2, ..., \tau_t$ are called <u>fixed effects</u>.
- If the *t* levels represent a random selection from a <u>large population</u> of levels, then $\tau_1, \tau_2, ..., \tau_t$ are called <u>random effects</u>.

Example: From a population of teachers, we randomly select 6 teachers and observe the standardized test scores for their students. Is there <u>significant variation</u> in student test score <u>among the population</u> of teachers?

• If $\tau_1, \tau_2, ..., \tau_t$ are random variables, the F-test no longer tests: $H_0: T_1 = T_2 = \cdots = T_+ = 0$

Instead, we test: $H_o: \sigma_T^2 = 0$ vs. $H_a: \sigma_T^2 > 0$

Question of interest: Is there significant variation among the different levels in the population?

• For the one-way ANOVA, the test statistic is exactly the same, $F^* = MSB / MSW$, for the random effects model as for the fixed effects model.