Multi-factor Factorial Experiments

- In the one-way ANOVA, we had a <u>single factor</u> having several different <u>levels</u>.
- Many experiments have multiple factors that may affect the response.

Example: Studying weight gain in puppies

Response (Y) = weight gain in pounds

Factors: Type of Diet (A, B, C) Exercise Program (None, Medium, Intense) Amount of Food (oz.) (4, 8, 12, 16)

- Here, 3 factors, each with several levels.
- Levels could be quantitative or qualitative.
- A <u>factorial experiment</u> measures a response for each combination of levels of several factors.

• Example above is a: $3 \times 3 \times 4$ factorial experiment (based on # of levels for each factor)

• We will study the effect on the response of the factors, taken individually and taken together.

Two Types of Effects

- The main effects of a factor measure the change in mean response across the levels of that factor (taken individually).
- <u>Interaction effects</u> measure how the effect of one factor varies for different levels of another factor.

Example: We may study the main effects of food amount on weight gain.

• But perhaps the effect of food amount is <u>different</u> for each type of diet: <u>Interaction</u> between amount and diet!

Picture: Example:

mean

mean

piet A

Diet B

gain

4 8 12 16

Two-Factor Factorial Experiments

- Model is more complicated than one-way ANOVA model.
- Assume we have two factors, A and C, with a and c levels, respectively: ($a \times c$ factorial experiment)
- ullet Assume we have n observations at each combination of factor levels.
- Total of acn observations.

Model:
$$\forall ijk = \mu + \alpha i + \delta j + (\alpha \delta)ij + \epsilon ijk$$

 $i=1,...,\alpha$ $j=1,...,\alpha$ $k=1,...,n$

- $Y_{ijk} = k$ -th observed response at level i of factor A and level j of factor C.
- μ = an overall mean response
- α_i 's (main effects of factor A) = difference between mean response for *i*-th level of A and the overall mean response
- γ_j 's (main effects of factor C) = difference between mean response for *j*-th level of C and the overall mean response
- (αγ)_{ij}'s (interaction effects between factors A and C)
- ϵ_{ijk} = random error component \rightarrow accounts for the variation among responses <u>at the same combination</u> of factor levels

- Again, we assume the random error is approximately normal, with mean 0 and variance σ^2 .
- We also restrict $\sum_{i} \alpha_{i} = \sum_{j} \gamma_{j} = \sum_{i} (\alpha \gamma)_{ij} = \sum_{j} (\alpha \gamma)_{ij} = 0$.

Example: (Meaning of main effects)

• Suppose $\alpha_1 = 3.5$ and $\alpha_2 = 2$. What does this mean?

Case I: (No interaction between A and C) $\rightarrow (\alpha \gamma)_{ii} = 0$ for all i, j

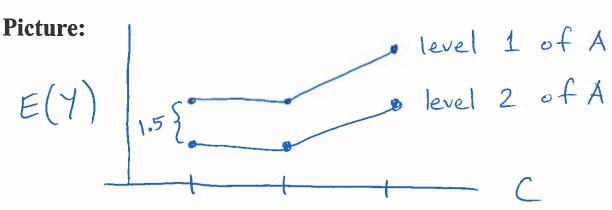
• Mean response at level 1 of factor A is:

$$E(\gamma_{1jk}) = \mu + \alpha_1 + \gamma_j$$
= $\mu + 3.5 + \gamma_j$
• Mean response at level 2 of factor A is:

$$E(Y_{2jk}) = M + \alpha_2 + \delta_j$$
$$= M + 2 + \delta_j$$

• For any fixed level of C, mean response at level 1 of A

of A, since
$$E(Y_{ijk}) - E(Y_{2jk}) = 1.5$$



Case II: (Interaction between A and C)

• Mean response at level 1 of factor A is:

$$E(Y_{1jk}) = M + \alpha_1 + Y_j + (\alpha Y)_{1j}$$

= $M + 3.5 + Y_j + (\alpha Y)_{1j}$

• Mean response at level 2 of factor A is:

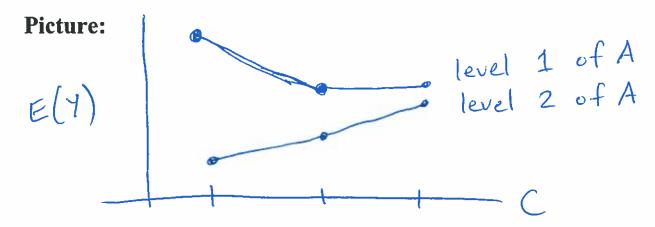
$$E(Y_{2jk}) = \mu + \alpha_2 + y_j + (\alpha y)_{2j}$$

= $\mu + 2 + y_j + (\alpha y)_{2j}$

• Here, the difference in mean responses for levels 1 and 2 of factor A is:

$$E(Y_{1jk}) - E(Y_{2jk}) = 3.5 - 2 + (x + x)_{1j} - (x + x)_{2j}$$

• This difference depends on the level of C!



• We see that the main effects are not directly interpretable in the presence of interaction.

• In a two-factor study, first we will test for interaction:

Ho:
$$(x Y)_{ij} = 0$$
 for all i, j
Ha: $(x Y)_{ij} \neq 0$ for some i, j

• If there is no significant interaction, we will test for main effects of each factor:

Notation for Sample Means:

 \overline{Y}_{ij} . = sample mean of observations for level i of A and level j of C [This is the (i, j) cell sample mean]

 $\overline{Y}_{i\bullet\bullet}$ = sample mean of observations for level i of A

 $\overline{Y}_{\bullet j \bullet}$ = sample mean of observations for level j of C

 $\overline{Y}_{\bullet \bullet \bullet}$ = sample mean of all observations in the study [This is the <u>overall</u> sample mean]

ANOVA Table for Two-Factor Experiment

• Partitioning the Variation in Y:

TSS =
$$\sum_{i,j} \sum_{k} (Y_{ijk} - Y_{...})^2 df = acn - 1$$

 \rightarrow measures total variation in Y-values

SS(Cells) =
$$n \sum_{i} \sum_{j} (\overline{Y_{ij}} - \overline{Y_{ij}})^2 df = ac - 1$$

measures variation across cell means

$$\mathbf{SSW} = \sum_{i} \sum_{j} \left(Y_{ijk} - \overline{Y}_{ijo} \right)^{2} df = ac(n-1)$$

measures variation within cells.

Picture:

$$MS(Cells) = \frac{SS(Cells)}{ac-1} \qquad MSW = \frac{SSW}{ac(n-1)}$$

• If MS(Cells) > MSW, the mean response is different across the cells \rightarrow the ANOVA model is not useless.

Overall F-test: If $F^* = MS(Cells) / MSW$ is greater than $F_{\alpha}[ac - 1, ac(n - 1)]$, then we conclude there is a difference among the population cell means.

Example (Table 9.5 data):

 2×3 factorial, a=2, c=3, n=5

• Software will calculate:

TSS= 92.547

SS(Cells)=66.523 = 13.30

MS(Cells) =
$$\frac{66.523}{5}$$
 = 13.30

MSW = $\frac{26.024}{24}$ = 1.084

F*= $\frac{13.30}{1.084}$ = 12.27 (P-value near 0)

Using
$$\alpha = 0.05$$
: $F_{.05}(5,24) = 2.62$ (Table A.4.A)

- If we reject H_0 : "all cell means are equal" with the overall F-test, then we test for (1) interaction and possibly (2) main effects.
- Further Partitioning of SS(Cells):

SSA =
$$cn\sum_{i}(\overline{Y}_{i\bullet\bullet} - \overline{Y}_{\bullet\bullet\bullet})^{2}$$
 d.f. = $a-1$
 \rightarrow measures variation due to factor A

SSC =
$$an\sum_{j} (\overline{Y}_{*j} - \overline{Y}_{**})^{2}$$
 d.f. = $c-1$
 \rightarrow measures variation due to factor C

SSAC = SS(Cells) - SSA - SSC d.f. =
$$(a-1)(c-1)$$

 \rightarrow measures variation due to interaction of
A and C.

Mean Squares:

$$MSA = \frac{SSA}{a-1} \quad MSC = \frac{SSC}{c-1} \quad MSAC = \frac{SSAC}{(a-1)(c-1)}$$

Source d.f. SS MS F*

Between Cells ac-1 SS(Cells) MS(Cells) MS(cells)/MSW

A a-1 SSA MSA MSA/MSW

C c-1 SSC MSC MSC/MSW

A x C (a-1)(c-1) SSAC MSAC MSAC/MSW

Within Cells (Error) ac(n-1) SSW MSW

Total acn-1 TSS

• We will usually calculate the ANOVA table quantities using software.

Useful F-tests in Two-Factor ANOVA

Testing for Significant Interaction: We reject

if:
$$F = \frac{MSAC}{MSW} > F_{\alpha} \left[(\alpha-1)(c-1) \right]$$

Example:
$$SSAC = 20.328$$
, $MSAC = \frac{20.328}{2} = 10.164$

$$F^* = \frac{10.164}{1.084} = 9.37$$
 and $F_{.05}(2,24) = 3.40$

there is significant interaction between engine

Note: If (and only if) the interaction is NOT significant, we test for significant main effects of factor A and of factor C:

• For factor A: We reject H_0 : $\alpha_i = 0$ for all i

if:

$$F * = \frac{MSA}{MSW} > F_{\alpha}[\alpha-1, \alpha c(n-1)]$$

• For factor C: We reject H_0 : $\gamma_j = 0$ for all j if:

f:

$$F^* = \frac{MSC}{MSW} > F_{\alpha}[C-1, \alpha c(n-1)]$$