
Chapter 9: Forecasting

I One of the critical goals of time series analysis is to forecast
(predict) the values of the time series at times in the future.

I When forecasting, we ideally should evaluate the precision of
the forecast.

I We will consider examples of forecasts for

1. deterministic trend models;
2. ARMA- and ARIMA-type models;
3. models containing deterministic trends and ARMA (or

ARIMA) stochastic components.

I The methods we use here assume the model (including
parameter values) is known exactly.

I This is not true in practice, but for large sample sizes, the
parameter estimates should be close to the true parameter
values.
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Minimum MSE Forecasting

I Assume we have observed the time series up to the present
time, t, so that we have observed Y1,Y2, . . . ,Yt .

I The goal is to forecast the value of Yt+`, which is the value `
time units into the future.

I In this case, time t is called the forecast origin and ` is called
the lead time of the forecast.

I The forecast (predicted future value) itself is denoted Ŷt(`).

I We will find the forecast formula that minimizes the mean
square error (MSE) of the forecast, E [(Yt+` − Ŷt(`))2], for a
variety of models.
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Forecasting with a Deterministic Trend Model

I Consider the trend model Yt = µt + Xt , where µt is some
deterministic trend and the stochastic component Xt has
mean zero.

I In particular, we assume {Xt} is white noise with variance γ0.
Then

Ŷt(`) = E (µt+` + Xt+`|Y1,Y2, . . . ,Yt)

= E (µt+`|Y1,Y2, . . . ,Yt) + E (Xt+`|Y1,Y2, . . . ,Yt)

= E (µt+`) + E (Xt+`) = µt+`,

since Xt+` has mean zero and is independent of the previously
observed values Y1,Y2, . . . ,Yt .
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Forecasting with a Linear Trend Model

I In the case in which we assume a linear trend, µt = β0 + β1t.

I So the forecast of the response at ` time units into the future
is Ŷt(`) = β0 + β1(t + `).

I This forecast assumes that the same linear trend holds in the
future, which can be a dangerous assumption, since we don’t
have the (future) data (yet) to justify it.
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Forecasting with Other Trend Models

I For a quadratic trend, where µt = β0 + β1t + β2t
2, the

forecast is Ŷt(`) = β0 + β1(t + `) + β2(t + `)2.

I With higher-order polynomial trends, extrapolating into the
future becomes even more risky.

I For periodic seasonal means models in which µt = µt+12, the
forecast is Ŷt(`) = µt+12+` = Ŷt(`+ 12).

I So for such models, the forecast at a particular time is the
same as the forecast at the time 12 months later.

I See the examples of forecasts on real data sets on the course
web page.
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Forecast Error and Forecast Error Variance

I The forecast error is denoted by et(`):

et(`) = Yt+` − Ŷt(`)

= µt+` + Xt+` − µt+` = Xt+`,

so that E [et(`)] = E [Xt+`] = 0.

I Thus the forecast is unbiased.

I And the forecast error variance is var [et(`)] = var [Xt+`] = γ0,
which does not depend on the lead time `.
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Forecasting in AR(1) Models

I Consider the AR(1) process with a nonzero mean µ:

Yt − µ = φ(Yt−1 − µ) + et .

I Suppose we want to forecast the process 1 time unit into the
future. Note that

Yt+1 − µ = φ(Yt − µ) + et+1.

I Taking the conditional expected value (given Y1,Y2, . . . ,Yt)
of both sides, we have:

Ŷt(1)− µ = φ[E (Yt |Y1,Y2, . . . ,Yt)− µ] + E (et+1|Y1,Y2, . . . ,Yt)

= φ[Yt − µ] + E (et+1) = φ[Yt − µ].

since et+1 is independent of Y1,Y2, . . . ,Yt and has mean zero.
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Forecasting and the Difference Equation Form

I So Ŷt(1) = µ+ φ(Yt − µ).

I That is, the forecast for the next value is the process mean,
plus some fraction of the current deviation from the process
mean.

I If we forecast not just 1 time unit but ` time units into the
future, we have

Ŷt(`) = µ+ φ[Ŷt(`− 1)− µ] for ` ≥ 1.

I So any forecast can be found recursively: We can find Ŷt(1),
which we can then use to find Ŷt(2), etc.

I This recursive formula is called the difference equation form of
the forecasts.
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A General Formula for Forecasts in AR(1) Models

I Note that we can solve for a general formula for a forecast
with a lead time ` in an AR(1) process:

Ŷt(`) = φ[Ŷt(`− 1)− µ] + µ

= φ[{φ[Ŷt(`− 2)− µ]}+ µ− µ] + µ

= φ[{φ[Ŷt(`− 2)− µ]}] + µ

...

= φ`−1[Ŷt(1)− µ] + µ

= φ`−1[µ+ φ(Yt − µ)− µ] + µ

which implies that Ŷt(`) = µ+ φ`(Yt − µ).

I So the fraction of the current deviation from the process
mean that is added to µ becomes closer to zero as the lead
time gets larger.
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Forecasting with the Color Property Example

I Recall that we used a AR(1) model for the color property time
series.

I Via ML, we estimated φ and µ to be 0.5705 and 74.3293,
respectively.

I For the purpose of the forecast, we will take these to be the
true parameter values (though they really are not).

I The last observed value, Yt , of this color property series was
67.

I So forecasting 1 time unit into the future yields
Ŷt(1) = 74.3293 + 0.5705(67− 74.3293) = 70.14793.
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Forecasting with the Color Property Example (continued)

I To forecast, say, 5 time units into the future, we can continue
recursively, or just use the general formula to obtain:
Ŷt(5) = 74.3293 + 0.57055(67− 74.3293) = 73.88636.

I Note that forecasting 20 time units into the future yields
Ŷt(20) = 74.3293 + 0.570520(67− 74.3293) = 74.3292.

I We see that for a large lead time, the forecast nearly equals µ.

I In general, for all stationary ARMA models, Ŷt(`) ≈ µ for
large `.
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One-step-ahead Forecast Error

I The one-step-ahead forecast error et(1) is the difference
between the actual value of the process one time unit into the
future and the predicted value one time unit ahead.

I For the AR(1) model, this is et(1) = Yt+1 − Ŷt(1) =
[φ(Yt − µ) + µ+ et+1]− [φ(Yt − µ) + µ] = et+1.

I So the one-step-ahead forecast error is simply a white-noise
observation, and it is independent of Y1,Y2, . . . ,Yt .

I And var [et(1)] = σ2e .
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Forecast Error for General Lead Time

I The forecast error for a general lead time, `, et(`), is the
difference between the actual value of the process ` time units
into the future and the predicted value ` time units ahead.

I For any general linear process, it can be shown that

et(`) = et+` + ψ1et+`−1 + ψ2et+`−2 + · · ·+ ψ`−1et+1

I Clearly, E [et(`)] = 0, so the forecasts are unbiased.

I And var [et(`)] = σ2e (1 + ψ2
1 + ψ2

2 + · · ·+ ψ2
`−1).

I These results hold for all ARIMA models.

Hitchcock STAT 520: Forecasting and Time Series



Forecast Error for General Lead Time in AR(1) Models

I For an AR(1) process, the forecast error for a general lead
time is

et(`) = et+` + φet+`−1 + φ2et+`−2 + · · ·+ φ`−1et+1

I And var [et(`)] = σ2e

[
1− φ2`

1− φ2

]
.

I So for long lead times, var [et(`)] ≈ σ2
e

1−φ2 for large `.

I And since this right hand side is the variance formula for an
AR(1) process, note that var [et(`)] ≈ var(Yt) = γ0 for large
`.

I This last result holds for all stationary ARMA models.
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Forecasting with an MA(1) Model

I Consider now an MA(1) model with a nonzero mean,
Yt = µ+ et − θet−1.

I Replacing t by t + 1 and taking conditional expectations, we
have

Ŷt(1) = µ− θE (et |Y1,Y2, . . . ,Yt).

I If the model is invertible, then E (et |Y1,Y2, . . . ,Yt) = et (at
least approximately, since we condition on Y1,Y2, . . . ,Yt

rather than on the infinite history . . . ,Y0,Y1,Y2, . . . ,Yt).

I If the model is not invertible, then E (et |Y1,Y2, . . . ,Yt) 6= et
(not even approximately).

I For an invertible MA(1) model, the one-step-ahead forecast is
Ŷt(1) = µ− θet .
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Forecast Error for MA(1) Model

I Again, the one-step-ahead forecast error is
et(1) = Yt+1 − Ŷt(1) = [µ+ et+1 − θet ]− [µ− θet ] = et+1.

I For longer lead time, where ` > 1,

Ŷt(`) = µ+E (et+`|Y1,Y2, . . . ,Yt)−θE (et+`−1|Y1,Y2, . . . ,Yt)

I But for ` > 1, both et+` and et+`−1 are independent of
Y1,Y2, . . . ,Yt , so these conditional expected values are both
zero.

I Therefore, in an invertible MA(1) model, Ŷt(`) = µ for ` > 1.
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Forecasting with the Random Walk with Drift

I Now we consider forecasting with a nonstationary ARIMA
process.

I Specifically, consider the random walk with drift model, where
Yt = Yt−1 + θ0 + et .

I This is basically an ARIMA(0, 1, 0) model with an extra
constant term.

I The forecast one step ahead is

Ŷt(1) = E (Yt |Y1,Y2, . . . ,Yt) + θ0 + E (et+1|Y1,Y2, . . . ,Yt)

= Yt + θ0
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Forecasting with the Random Walk with Drift with General
Lead Time

I For ` > 1, Ŷt(`) = Ŷt(`− 1) + θ0.

I So by iterating backward, we see that Ŷt(`) = Yt + θ0` for
` ≥ 1.

I The forecast, as a function of the lead time `, is a straight line
with slope θ0.

I With nonstationary series, the presence of the constant term
has a major effect on the forecast, so it is important to
determine whether the constant term is truly needed (we
could check whether it is significantly different from zero).
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Forecast Error with the Random Walk with Drift

I For the random walk with drift model, the one-step-ahead
forecast error is again et(1) = Yt+1 − Ŷt(1) = et+1.

I But the forecast error ` steps ahead can be shown to be
et(`) = et+1 + et+2 + · · ·+ et+`.

I So var [et(`)] = `σ2e .

I In this nonstationary model, the variance of the forecast error
continues to increase without bound as the lead time gets
larger.

I This phenomenon will happen with all nonstationary ARIMA
models.

I On the other hand, with stationary models, the variance of
the forecast error increases as the lead time gets larger, but
there is a limit to the increase.

I And with deterministic trend models, the variance of the
forecast error is constant as the lead time gets larger.
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Forecasting with the ARMA(p, q) Model

I The general difference equation form for forecasts in the
ARMA(p, q) model is somewhat complicated:

Ŷt(`) = φ1Ŷt(`− 1) + φ2Ŷt(`− 2) + · · ·+ φpŶt(`− p) + θ0

− θ1et+`−1I [` ≤ 1]− θ2et+`−2I [` ≤ 2]

− · · · − θqet+`−2I [` ≤ q]

where the indicator I [·] equals 1 if the condition in the
brackets is true, and 0 otherwise.

I For example, with an ARMA(1, 1) model,
Ŷt(1) = φYt + θ0 − θet , and Ŷt(2) = φŶt(1) + θ0, and in
general, Ŷt(`) = φŶt(`− 1) + θ0 for ` ≥ 2.

I With an ARMA(1, 1) model, an explicit general formula for a
forecast ` time units ahead, in terms of µ = E (Yt), is

Ŷt(`) = µ+ φ`(Yt − µ)− φ`−1θet for ` ≥ 1.

Hitchcock STAT 520: Forecasting and Time Series



More On Forecasting with the ARMA(p, q) Model

I For lead time ` = 1, 2, . . . , q, the noise terms appear in the
formulas for the forecasts.

I For longer lead times (i.e., ` > q) the noise terms disappear
and only the autoregressive component (and the constant
term) of the model affects the forecast.

I For ` > q, the difference equation formula for the
ARMA(p, q) model reduces to
Ŷt(`) = φ1Ŷt(`− 1) + φ2Ŷt(`− 2) + · · ·+ φpŶt(`− p) + θ0.
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Forecasting with the ARMA(p, q) Model as Lead Times
Increase

I Since we have shown that θ0 = µ(1− φ1 − φ2 − · · · − φp),
this can be rewritten as

Ŷt(`)− µ = φ1[Ŷt(`− 1)− µ] + φ2[Ŷt(`− 2)− µ]+

· · ·+ φp[Ŷt(`− p)− µ] for ` ≥ q.

I For a stationary ARMA model, Ŷt(`)− µ will decay toward
zero as the lead time ` increases, and thus for long lead times,
the forecast will approximately equal the process mean µ.

I This is sensible because for stationary models, the dependence
grows weaker as the time between observations increases, and
µ would be the natural best forecast to use if there were no
dependence over time.
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Forecasting with Nonstationary Models

I We have seen one example of forecasting with nonstationary
models (the random walk with drift).

I For an ARIMA(1, 1, 1) model,

Ŷt(1) = (1 + φ)Yt − φYt−1 + θ0 − θet
Ŷt(2) = (1 + φ)Ŷt(1)− φYt + θ0

...

Ŷt(`) = (1 + φ)Ŷt(`− 1)− φŶt(`− 2) + θ0

I These forecasts are unbiased, i.e., E [et(`)] = 0 for any ` ≥ 1.
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Forecast Error Variance with Nonstationary Models

I But the variance of the forecast error is

var [et(`)] = σ2e

`−1∑
j=0

ψ2
j for ` ≥ 1.

I For a nonstationary series, these ψj weights do not decay to
zero as j increases.

I So the forecast error variance increases without bound as the
lead time ` increases.

I Lesson: With nonstationary series, when we forecast far into
the future, we have a lot of uncertainty about the forecast.
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