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Chapter 8: Canonical Correlation Analysis and Multivariat e

Regression

• We now will look at methods of investigating the association between sets of

variables.

• When exactly two variables are measured on each individual, we might study the

association between the two variables via correlation analysis or simple linear

regression analysis.

• When one response (or dependent) variable and several explanatory variables (a.k.a.

independent variables or predictors) are observed for each individual, then the method

of multiple linear regression analysis could be used to study the relationship

between the response and the predictors.
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Canonical Correlation Analysis and Multivariate Regressi on

• In this chapter, we consider having two sets of variables, say, one set X1, . . . , Xq1

and another set Y1, . . . , Yq2
.

• When one set is considered “response variables” and the other set is considered

“predictor variables”, then we could use multivariate regression.

• When there is not a clear response-predictor relationship, we could use canonical

correlation analysis (CCA) to analyze the associations.
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Canonical Correlation Analysis (CCA)

• In CCA, we wish to characterize distinct statistical relationships between a set of q1

variables and another set of q2 variables.

• For example, we may have a set of “aptitude variables” and a set of “achievement

variables” for a sample of individuals.

• Another example: We may have a set of “job duty variables” and a set of “job

satisfaction variables” for a sample of employees.

• Another example: We may have a set of “head measurements” and a set of “body

measurements” for a sample of individuals or animals.

• How are the sets associated?
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The CCA Approach

• While the (q1 + q2)× (q1 + q2) correlation matrix contains the sample correlations

between all pairs of variables, it does not directly tell us about within-set associations

and between-set associations.

• Let the first set of variables be denoted as x = x1, . . . , xq1
and the second set be

denoted as y = y1, . . . , yq2
.

• We will seek the linear combination of the x variables and the linear combination of

the y variables that are most highly correlated.

• After that, we will seek other linear combinations of the x’s and y’s that have high

correlations.

• We want each pair of combinations to tell us something distinct, so we require that

the combinations be mutually uncorrelated with the rest except for their “partner”

combination!
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Mathematics Behind CCA

• Step 1: Choose u1 = a
′

1x = a11x1 + a21x2 + · · · + aq11xq1
and v1 = b

′

1y =

b11y1 + b21y2 + · · · + bq21yq2
such that R1 = corr(u1, v1) is greater than the

correlation between any other linear combinations of the x’s and y’s.

• Step 2: Choose u2 = a
′

2x = a12x1 + a22x2 + · · · + aq12xq1
and v2 = b

′

2y =

b12y1 + b22y2 + · · ·+ bq22yq2
such that R2 = corr(u2, v2) is as large as possible,

subject to the restrictions on the next slide.

• We can continue doing this for s steps, getting s pairs of linear combinations, where

s = min(q1, q2).

• In practice, we may focus on a smaller number of pairs of linear combinations than

s.
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Restrictions on the Linear Combinations

• We place the following restrictions on the possible linear combinations:

1. cov(ui, uj) = 0 for all i 6= j (the ui’s are all uncorrelated)

2. cov(vi, vj) = 0 for all i 6= j (the vi’s are all uncorrelated)

3. cov(ui, vj) = 0 for all i 6= j (the ui is uncorrelated with all vj except vi)

4. R1 > R2 > · · · > Rs (the earlier pairs of linear combinations have the higher

correlations)

• The linear combinations (u1, v1), . . . , (us, vs) are called the canonical variates.

• The correlations R1, R2, . . . , Rs between the canonical variates are called the

canonical correlations.
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Decomposition of the Full Sample Correlation Matrix

• If we arrange all q1 + q2 variables into one combined data set in the order

x1, . . . , xq1
, y1, . . . , yq2

, then we could write the full sample correlation matrix as

R =









R11 | R12

R21 | R22









• Here, R11 is the q1 × q1 sample correlation matrix of the first set of variables (the

x’s) alone.

• R22 is the q2 × q2 sample correlation matrix of the second set of variables (the y’s)

alone.

• R12 is the q1 × q2 matrix of correlations between the x’s and the y’s.

• Note that R21 = R
′

12, i.e., the transpose of R12.

STAT J530 Page 7



University of South Carolina Hitchcock

Coefficients of the Linear Combinations

• The vectors ai and bi (i = 1, . . . , s) that contain the coefficients of the s pairs of

linear combinations can be derived from R11,R12,R22.

• The vectors a1, . . . , as are the eigenvectors of the q1×q1 matrix E1 = R−1
11 R12R

−1
22 R21.

• The vectors b1, . . . ,bs are the eigenvectors of the q2×q2 matrix E2 = R−1
22 R21R

−1
11 R12.

• The canonical correlations R1, R2, . . . , Rs are the square roots of the (nonzero)

eigenvalues of either E1 or E2.
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Interpreting the Canonical Variables and Correlations

• The canonical correlations R1, R2, . . . , Rs represent the associations between the

set of x’s and the set of y’s after the within-set correlations have been removed.

• Canonical variables are typically somewhat artificial, being combinations of possibly

disparate variables.

• Thus they do not typically have meaningful units of measurement.

• It is common to standardize all the variables before performing the CCA.

• We may interpret the coefficients of the canonical variables similarly to how we

interpret the coefficients of principal components.

• Understanding which variables “load heavily” on the various ui’s and vi’s can help

us describe the associations between the sets of variables.
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Other Facts About CCA

• There is a relationship between multiple discriminant function analysis and CCA.

• Suppose X is a data matrix with several variables and G is a matrix of indicators

assigning each individual to one of several groups.

• Then if we perform a CCA to investigate the association between X and G, we

obtain the linear discriminant functions as the result (Mardia et al., 1979).

• The i-th squared canonical correlation is the proportion of the variance of ui

explained by y1, . . . , yq2
.

• It is also the proportion of the variance of vi explained by x1, . . . , xq1
.

• The largest squared canonical correlation, R2
1, is sometimes used to measure “set

overlap.”
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Inference in CCA

• It may be of interest to formally test whether the canonical correlations are

significantly different from zero.

• Problems 8.3 and 8.4 of the textbook outline (likelihood-ratio-based) χ2 tests

proposed by Bartlett.

• The first of these tests H0 : All (population) canonical correlations are zero vs.

Ha : At least one canonical correlation significantly differs from zero.

• If H0 is rejected, then Bartlett proposes a sequence of procedures that test whether

the second-largest canonical correlation significantly differs from zero, then the third-

largest, etc.
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Inference in CCA (Continued)

• In R and SAS we can implement a nearly equivalent series of (likelihood-ratio-

based) F-tests (due to Rao) that test the null hypothesis that the current (population)

canonical correlation and all smaller ones are zero.

• We judge each canonical correlation (taken from largest to smallest) to be significant

if its accompanying P-value is small enough.

• Once a nonsignificant P-value is obtained, that canonical correlation (and all

smaller ones) are judged not significantly different from zero.

• Note that the overall family significance level of this series of sequential tests cannot

easily be determined, so we should use the procedure as a rough guideline.

• This procedure is appropriate for large samples from an approximately multivariate

normal population.
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Multivariate Regression

• In multivariate regression we wish to predict or explain a set of r response (or

dependent) variables Y1, . . . , Yr via a set of p predictor (or independent) variables

X1, . . . , Xp.

• For example, the military may have several outcome variables that can be measured

for enlistees.

• These outcome variables may be related to predictor variables (such as scores on

physical tests and/or intelligence tests) through a multivariate regression model.

• The multivariate regression model extends the multiple regression model to the

situation in which there are several different response variables.
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The Multivariate Regression Model

• The ordinary multiple linear regression model equation can be written in matrix-

vector form as

Y = Xβ + ǫ

where Y and ǫ are n × 1 vectors, X is a matrix containing the observed values

of the predictor variables (plus a column of 1’s), and β is a vector containing the

regression coefficients.

• The multivariate linear regression model equation can be written similarly:

Y = Xβ + ǫ

• Here, Y and ǫ are n × r matrices, X is still an n × (p + 1) matrix containing the

observed values of the predictor variables (plus a column of 1’s), and β is now a

(p + 1) × r matrix containing the regression coefficients.
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Further Explanation of the Multivariate Regression Model

• The n rows of Y correspond to the n different individuals.

• The r columns of Y correspond to the r different response variables.

• Note that the first row of β is a row of intercept terms corresponding to the r

response variables.

• Then the (i + 1, j) entry of β measures the marginal effect of the i-th predictor

variable on the j-th response variable.
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The Multivariate Regression Model Assumptions

• We assume that all of the nr elements of ǫ have mean 0.

• Any single row of ǫ has covariance matrix Σ (generally non-diagonal).

• This implies that the response variables within an individual multivariate observation

may be correlated.

• However, we also assume that response values from different individuals are

uncorrelated.

• For doing inference about the multivariate regression model, we further assume that

each column of ǫ has a multivariate normal distribution.
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Fitting the Multivariate Regression Model

• We can fit the multivariate regression model using least squares, analogously to

multiple linear regression.

• The matrix of estimated regression coefficients β̂LS is found by:

β̂LS = (X
′

X)−1X
′

Y

• This choice of estimated coefficients β̂LS is the value of β̂ that minimizes

tr[(Y − Xβ̂)
′

(Y − Xβ̂)].

• From now on, we will typically drop the LS subscript and simply refer to the least-

squares estimate of β as β̂.
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More on the Fitted Multivariate Regression Model

• Computationally, β̂ may be found by computing separate least-squares multiple

regression equations for each of the r response variables.

• We then combine the resulting vectors of regression estimates into a matrix β̂.

• The matrix of fitted response values (containing the “predicted” response vectors for

the observed individuals) is Ŷ = Xβ̂.

• The matrix of residual values is simply Y − Ŷ.

• The multivariate regression model can be estimated in R with the lm function and

in SAS with PROC REG (or PROC GLM).
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Inference in the Multivariate Regression Model

• If the error vectors have a multivariate normal distribution, then β̂ is the maximum

likelihood estimator of β and each column of β̂ has a multivariate normal sampling

distribution.

• We can use these facts to make various inferences about the regression model.

• For example, we may wish to test whether one (or some) of the predictor variables

are not related to the set of response variables.

• To test whether the i-th predictor is related to the set of response variables, we test

whether the i-th row of β equals the zero vector.

• This can be done with a likelihood-ratio test (either a χ2 test or an F-test).
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More Inference in the Multivariate Regression Model

• Furthermore, we may we may wish to test whether a set of several predictor

variables is not related to the set of response variables.

• For example, label the predictors as X1, X2, . . . , Xp. We can test whether, say,

only the first p1 of the predictors are related to the set of response variables, and

the last p − p1 are useless in predicting the set of response variables.

• For this type of test, we can decompose the β matrix into 2 pieces:

β =









β(1)

β(2)









where β(1) contains the first p1 + 1 rows of β and β(2) contains the last p − p1

rows of β.

• We test H0 : β(2) = 0, where 0 here is a matrix (the same size as β(2)) of zeroes.

• Of course, if the predictors we want to test about are not the last few, we simply pick

out the appropriate rows of β and test whether those rows all equal the zero vector.
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Test Statistic for Testing Hypotheses Involving β

• Whether we want to test that one predictor, some predictors, or all predictors is/are

not related to the set of responses, we can use a likelihood ratio approach.

• The test statistic is based on the discrepancy between Efull and Ereduced.

• Efull is the matrix of sums of squares and cross products of residuals for the full

model (containing all the predictor variables) and Ereduced is that matrix for the

reduced model (without the predictor(s) are are testing about).

• Under H0, for large samples, the test statistic

−[n − p − 1 − 0.5(r − p + p1 + 1)] ln

(

|Efull|

|Ereduced|

)

has an approximate χ2 distribution with r(p− p1) degrees of freedom, so a χ2 test

can be done.

• A similar test statistic has an approximate F-distribution, so an essentially equivalent

F-test will test these hypotheses.
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Prediction Ellipsoids in Multivariate Regression

• Suppose we have a new individual whose values of the predictor variables are

known but whose values for the response variables are not available (yet).

• A point prediction of [Y1, Y2, . . . , Yr] for this individual is simply x
′

0β̂, where x
′

0 =

[1, x10, . . . , xp0] contains the known values of the predictor variables for that

individual.

• An r-dimensional 100(1 − α)% prediction ellipsoid can be constructed based on

the F-distribution (see Johnson and Wichern, 2002, pp. 395-396 for details).

• These ellipsoids are 2-D ellipses when there are r = 2 response variables, and

they can be plotted fairly easily in R.
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Confidence Ellipsoids in Multivariate Regression

• Also, we may wish to estimate the mean response vector [E(Y1), E(Y2), . . . , E(Yr)]

corresponding to the values x
′

0 = [1, x10, . . . , xp0] of the predictor variables.

• The point estimate of [E(Y1), E(Y2), . . . , E(Yr)] is again x
′

0β̂.

• An r-dimensional 100(1 − α)% confidence ellipsoid for the mean response vector

can be constructed based on the F-distribution.

• For a given x0, the confidence ellipsoid for the mean response vector will always be

tighter than the corresponding prediction ellipsoid for the response vector of a new

individual.
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Checking Model Assumptions in Multivariate Regression

• The model assumptions should be checked in multivariate regression using tech-

niques similar to those used in simple linear regression or multiple linear regression.

• To check the normality of the error terms, a normal Q-Q plot of the residual vectors

ǫ1, . . . , ǫr for each response variable can be examined.

• For each response variable, the residual vector can be plotted against the vector of

fitted values to look for outliers or unusual patterns.

• Transformations of one or more response variables may be tried if violations of the

model assumptions are apparent.
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