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Some General Notation

▶ Notation: We hereby denote our data as the n× k matrix Y .

▶ We denote the parameter(s) of interest (possibly
multidimensional) to be the vector θ.

▶ We will denote our posterior distribution for θ using p(θ|Y ).
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Likelihood Theory

▶ The likelihood function L(θ|Y ) is a function of θ that shows
how “likely” are various parameter values θ to have produced
the data Y that were observed.

▶ In classical statistics, the specific value of θ that maximizes
L(θ|Y ) is the maximum likelihood estimator (MLE) of θ.

▶ In many common probability models, when the sample size n
is large, L(θ|Y ) is unimodal in θ.

▶ Note: Unlike p(θ|Y ), L(θ|Y ) does not necessarily obey the
usual laws for probability distributions.

▶ Also, in the classical framework, all the randomness within
L(θ|Y ) is attached to Y , not to θ.
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Likelihood Theory

▶ Mathematically, if the data Y represent iid observations from
probability distribution p(Y |θ), then

L(θ|Y ) =
n∏

i=1

p(Y i |θ)

(where Y 1, . . . ,Y n are the n data vectors).

▶ The Likelihood Principle of Birnbaum states that (given the
data) all of the evidence about θ is contained in the likelihood
function.

▶ Likelihood Principle implies: Two experiments that yield equal
(or proportional) likelihoods should produce equivalent
inference about θ.
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The Bayesian Framework

▶ Suppose we observe an iid sample of data Y = (Y 1, . . . ,Y n).

▶ Now Y is considered fixed and known.

▶ We also must specify p(θ), the prior distribution for θ, based
on any knowledge we have about θ before observing the data.

▶ Our model for the distribution of the data will give us the
likelihood

L(θ|Y ) =
n∏

i=1

p(Y i |θ).
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The Bayesian Framework

▶ Then by Bayes’ Rule, our posterior distribution is

p(θ|Y ) =
p(θ)L(θ|Y )

p(Y )

=
p(θ)L(θ|Y )∫

Θ p(θ)L(θ|Y ) dθ

▶ Note that the marginal distribution of Y , p(Y ), is simply
the joint density p(θ,Y ) (i.e., the numerator) with θ
integrated out.

▶ With respect to θ, it is simply a normalizing constant that
ensures that p(θ|Y ) integrates to 1.
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The Bayesian Framework

▶ Since p(Y ) carries no information about θ, for conciseness we
may drop it and write

p(θ|Y ) ∝ p(θ)L(θ|Y ).

▶ Often we can calculate the posterior distribution by
multiplying the prior by the likelihood and then normalizing
the posterior at the last step, by including the necessary
constant.

▶ Having presented the Bayesian framework in general, we now
look at a specific example of a very common Bayesian model.
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Examples of the Beta-Binomial Model

▶ Recall the model for, say, Y , the number of games (out of 6)
that Kasparov would win in the tournament against Deep
Blue.

▶ We model Y as binomial with parameters n = 6 and success
probability π ∈ [0, 1].

▶ The book gives the example of a candidate running for office.
If the probability of a randomly selected voter supporting the
candidate is π, then the number of voters in a random sample
of 50 voters who support her is binomial(50, π).
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A Prior Distribution for π

▶ Since the parameter π is restricted to be between 0 and 1, we
should choose a prior distribution with support on [0, 1].

▶ Let f (π) denote the prior probability density function (pdf) for
π.

▶ Note f (π) has the usual properties of a pdf: It is non-negative
everywhere, and it integrates to 1 over its support (which is
[0, 1] in this example).

▶ The formula for the pdf of a Beta prior distribution for π is:

f (π) =
Γ(α+ β)

Γ(α)Γ(β)
πα−1(1− π)β−1, 0 ≤ π ≤ 1,

where α > 0 and β > 0 are the hyperparameters of this prior
model.

▶ Note that Γ(z) =
∫∞
0 xz−1e−x dx .
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Properties of the Beta Distribution

▶ In a real problem, we need to specify the values of our
hyperparameters α and β of our prior.

▶ Ideally our choices of α and β should reflect our prior beliefs
about π.

▶ If we have no prior idea what π is, we could set α = β = 1,
which corresponds to a Uniform(0, 1) prior for π: completely
flat, so that all values of π are equally likely a priori.

▶ If we have more informative prior beliefs about the value of π,
we could choose α and β to reflect that.

▶ Plots of the Beta pdf for various values of α and β can help
inform the prior specification (see R examples).
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Expected Value of the Beta

▶ The expected value of a Beta(α, β) r.v. is

α

α+ β
.

▶ So if our prior belief is that π is closer to 0 than to 1, we
should choose our hyperparameters α and β such that α < β.

▶ If our prior belief is that π is closer to 1 than to 0, we should
set α > β.

▶ The mode (location where the pdf reaches its maximum) for
the Beta(α, β) pdf is

α− 1

α+ β − 2
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Variance of the Beta

▶ The variance of a Beta(α, β) r.v. is

αβ

(α+ β)2(α+ β + 1)
.

and the standard deviation is the square root of this.

▶ So if our prior belief is strong that π is near a certain value,
we can pick α and β so that this variance is small.

▶ If our prior belief is less certain, we can pick α and β so that
this variance is large.
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Choosing the Hyperparameters of the Beta

▶ The plot beta function in the bayesrules package can help
us pick α and β by trial and error.

▶ Example: If we believe the value of π is around 0.45, we could
choose many sets of α and β that would yield E (π) = 0.45.

▶ For example, α = 9 and β = 11; α = 18 and β = 22; α = 45
and β = 55.

▶ Plotting the Beta(45, 55) pdf shows that this choice of priors
indicates we believe that π is very likely to be between 0.3
and 0.6.

▶ Check: For a Beta(45, 55) distribution, the standard deviation
is 0.05.

▶ So the interval (0.3, 0.6) is within three standard deviations of
the mean.
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The Binomial Model for the Data

▶ Political candidate example: Suppose we plan to conduct a
poll of 50 randomly selected voters and count how many of
these 50 voters support our candidate.

▶ Given π, the number of the 50 voters who support her
(denote this as Y |π) is a binomial(50, π) random variable with
probability mass function (pmf):

f (y |π) = P(Y = y |π) =
(
50

y

)
πy (1− π)50−y .

▶ This pmf tells us: If the success probability is π, what is the
probability that the total number of supportive voters Y
equals some value y?
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The Likelihood Using the Binomial Model

▶ Suppose we take the sample and find that Y = 30 of the 50
sampled voters support her.

▶ We could calculate the likelihood of π given y = 30:

L(π|y = 30) =

(
50

30

)
π30(1− π)50−30.

▶ This likelihood tells us: Given that y = 30 of the 50 voters
were supportive, what is the likelihood of any particular
binomial probability π?

▶ Some examples: The likelihood that π = 0.6 given y = 30 is

L(π = 0.6|y = 30) =

(
50

30

)
0.630(0.4)20 ≈ 0.115.

▶ The likelihood that π = 0.5 given y = 30 is

L(π = 0.5|y = 30) =

(
50

30

)
0.530(0.5)20 ≈ 0.042.
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Maximizing the Likelihood with the Binomial Model

▶ Using calculus, you can show that the likelihood here is
maximized when π = 0.6.

▶ So π̂ = 0.6 (which is just the sample proportion 30/50 here)
is called the maximum likelihood estimate (MLE) of π for this
data set.

▶ Note that this maximum likelihood estimation approach
does not use the prior information to help estimate π; it only
uses the information in the sample data.
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The Beta Posterior Model

▶ The prior tells us information about the value of π, based on
our prior knowledge.

▶ Candidate example: We believe a priori that the value of π is
near 0.45.

▶ The likelihood tells us information about the value of π, based
on information in our data.

▶ Candidate example: We believe based on the data that the
value of π is near 0.6.

▶ The posterior distribution balances the information in the
prior and the data.

▶ The posterior uses the data information to update the prior
information.

▶ See the R plots to visually assess the position of the posterior
relative to the prior and the likelihood.
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Mathematical Development of the Posterior

▶ The posterior density function is denoted f (π|y) and by
Bayes’ Rule, this is

f (π|y) = f (π)f (y |π)
f (y)

=
f (π)L(π|y)

f (y)

▶ The denominator f (y) is just a normalizing constant and we
don’t actually have to calculate it.

▶ We can use the fact that the posterior is proportional to the
prior times the likelihood, i.e.,

f (π|y) ∝ f (π)× L(π|y)

▶ Candidate example:

f (π|y) ∝ π45−1(1− π)55−1π30(1− π)20

= π74(1− π)74

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Chapter 3: The Beta-Binomial Bayesian Model



We Only Need the Kernel of the Posterior

▶ Notice that we can ignore all of the normalizing constants in
the likelihood and the prior.

▶ This leaves us with only the kernel of the posterior
distribution.

▶ but we recognize this as the kernel of a Beta(75, 75)
distribution for π.

▶ So the posterior distribution of π is Beta(75, 75).
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General Formula for the Beta Posterior

▶ In general, if Y |π ∼ Bin(n, π) (data model) and
π ∼ Beta(α, β) (prior model), then the posterior model will
be:

π|y ∼ Beta(α+ y , β + n − y).

▶ So the posterior expected value is

E (π|y) = α+ y

α+ β + n

▶ The posterior mode is

Mode(π|y) = α+ y − 1

α+ β + n − 2

and the posterior variance is

Var(π|y) = (α+ y)(β + n − y)

(α+ β + n)2(α+ β + n + 1)
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Possible Point Estimators Based on the Posterior

▶ Either the posterior mean (expected value) or the posterior
mode could be used as an estimator of π.

▶ An estimator based on the posterior would take into account
both the prior information and the data information.
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Conjugate Prior

▶ A conjugate prior is one for which the prior distribution and
the posterior distribution have the same family (same
functional form), just with different (updated) parameters.

▶ For example, in the Beta-binomial model, the prior is a Beta
and the posterior is also a Beta, so this was a conjugate prior.

▶ Again, the prior’s parameters reflect only our prior knowledge
(via α and β) whereas the posterior’s parameters reflect both
the prior and the data (via α, β, y , and n).
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Inference with Beta-Binomial Model

▶ Consider letting the Bayesian point estimate of π be π̂B = the
posterior mean.

▶ The mean of the (posterior) beta distribution is:

π̂B =
y + α

y + α+ n − y + β
=

y + α

α+ β + n

Note π̂B =
y

α+ β + n
+

α

α+ β + n

=

[
n

α+ β + n

](
y

n

)
+

[
α+ β

α+ β + n

](
α

α+ β

)
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Inference with Beta/Binomial Model

▶ So the Bayes estimator π̂B is a weighted average of the usual
frequentist estimator (sample mean, i.e., the sample
proportion of “successes” here) and the prior mean.

▶ As n ↑, the sample data are weighted more heavily and the
prior information less heavily.

▶ In general, with Bayesian estimation, as the sample size
increases, the likelihood dominates the prior.

▶ See R example with credit card debt data.
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