STAT 535: Chapter 3:
 The Beta-Binomial Bayesian Model

David B. Hitchcock
E-Mail: hitchcock@stat.sc.edu

Spring 2022

Some General Notation

- Notation: We hereby denote our data as the $n \times k$ matrix \boldsymbol{Y}.
- We denote the parameter(s) of interest (possibly multidimensional) to be the vector $\boldsymbol{\theta}$.
- We will denote our posterior distribution for $\boldsymbol{\theta}$ using $p(\boldsymbol{\theta} \mid \boldsymbol{Y})$.

Likelihood Theory

- The likelihood function $L(\boldsymbol{\theta} \mid \boldsymbol{Y})$ is a function of $\boldsymbol{\theta}$ that shows how "likely" are various parameter values $\boldsymbol{\theta}$ to have produced the data \boldsymbol{Y} that were observed.
- In classical statistics, the specific value of $\boldsymbol{\theta}$ that maximizes $L(\boldsymbol{\theta} \mid \boldsymbol{Y})$ is the maximum likelihood estimator (MLE) of $\boldsymbol{\theta}$.
- In many common probability models, when the sample size n is large, $L(\boldsymbol{\theta} \mid \boldsymbol{Y})$ is unimodal in $\boldsymbol{\theta}$.
- Note: Unlike $p(\boldsymbol{\theta} \mid \boldsymbol{Y}), L(\boldsymbol{\theta} \mid \boldsymbol{Y})$ does not necessarily obey the usual laws for probability distributions.
- Also, in the classical framework, all the randomness within $L(\boldsymbol{\theta} \mid \boldsymbol{Y})$ is attached to \boldsymbol{Y}, not to $\boldsymbol{\theta}$.

Likelihood Theory

- Mathematically, if the data \boldsymbol{Y} represent iid observations from probability distribution $p(\boldsymbol{Y} \mid \boldsymbol{\theta})$, then

$$
L(\boldsymbol{\theta} \mid \boldsymbol{Y})=\prod_{i=1}^{n} p\left(\boldsymbol{Y}_{i} \mid \boldsymbol{\theta}\right)
$$

(where $\boldsymbol{Y}_{1}, \ldots, \boldsymbol{Y}_{n}$ are the n data vectors).

- The Likelihood Principle of Birnbaum states that (given the data) all of the evidence about $\boldsymbol{\theta}$ is contained in the likelihood function.
- Likelihood Principle implies: Two experiments that yield equal (or proportional) likelihoods should produce equivalent inference about $\boldsymbol{\theta}$.

The Bayesian Framework

- Suppose we observe an iid sample of data $\boldsymbol{Y}=\left(\boldsymbol{Y}_{1}, \ldots, \boldsymbol{Y}_{n}\right)$.
- Now \boldsymbol{Y} is considered fixed and known.
- We also must specify $p(\boldsymbol{\theta})$, the prior distribution for $\boldsymbol{\theta}$, based on any knowledge we have about $\boldsymbol{\theta}$ before observing the data.
- Our model for the distribution of the data will give us the likelihood

$$
L(\boldsymbol{\theta} \mid \boldsymbol{Y})=\prod_{i=1}^{n} p\left(\boldsymbol{Y}_{i} \mid \boldsymbol{\theta}\right)
$$

The Bayesian Framework

- Then by Bayes' Rule, our posterior distribution is

$$
\begin{aligned}
p(\boldsymbol{\theta} \mid \boldsymbol{Y}) & =\frac{p(\boldsymbol{\theta}) L(\boldsymbol{\theta} \mid \boldsymbol{Y})}{p(\boldsymbol{Y})} \\
& =\frac{p(\boldsymbol{\theta}) L(\boldsymbol{\theta} \mid \boldsymbol{Y})}{\int_{\Theta} p(\boldsymbol{\theta}) L(\boldsymbol{\theta} \mid \boldsymbol{Y}) \mathrm{d} \boldsymbol{\theta}}
\end{aligned}
$$

- Note that the marginal distribution of $\boldsymbol{Y}, p(\boldsymbol{Y})$, is simply the joint density $p(\boldsymbol{\theta}, \boldsymbol{Y})$ (i.e., the numerator) with $\boldsymbol{\theta}$ integrated out.
- With respect to $\boldsymbol{\theta}$, it is simply a normalizing constant that ensures that $p(\boldsymbol{\theta} \mid \boldsymbol{Y})$ integrates to 1 .

The Bayesian Framework

- Since $p(\boldsymbol{Y})$ carries no information about $\boldsymbol{\theta}$, for conciseness we may drop it and write

$$
p(\boldsymbol{\theta} \mid \boldsymbol{Y}) \propto p(\boldsymbol{\theta}) L(\boldsymbol{\theta} \mid \boldsymbol{Y})
$$

- Often we can calculate the posterior distribution by multiplying the prior by the likelihood and then normalizing the posterior at the last step, by including the necessary constant.
- Having presented the Bayesian framework in general, we now look at a specific example of a very common Bayesian model.

Examples of the Beta-Binomial Model

- Recall the model for, say, Y, the number of games (out of 6) that Kasparov would win in the tournament against Deep Blue.
- We model Y as binomial with parameters $n=6$ and success probability $\pi \in[0,1]$.
- The book gives the example of a candidate running for office. If the probability of a randomly selected voter supporting the candidate is π, then the number of voters in a random sample of 50 voters who support her is binomial $(50, \pi)$.

A Prior Distribution for π

- Since the parameter π is restricted to be between 0 and 1 , we should choose a prior distribution with support on $[0,1]$.
- Let $f(\pi)$ denote the prior probability density function (pdf) for π.
- Note $f(\pi)$ has the usual properties of a pdf: It is non-negative everywhere, and it integrates to 1 over its support (which is $[0,1]$ in this example).
- The formula for the pdf of a Beta prior distribution for π is:

$$
f(\pi)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \pi^{\alpha-1}(1-\pi)^{\beta-1}, 0 \leq \pi \leq 1
$$

where $\alpha>0$ and $\beta>0$ are the hyperparameters of this prior model.

- Note that $\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x$.

Properties of the Beta Distribution

- In a real problem, we need to specify the values of our hyperparameters α and β of our prior.
- Ideally our choices of α and β should reflect our prior beliefs about π.
- If we have no prior idea what π is, we could set $\alpha=\beta=1$, which corresponds to a $\operatorname{Uniform}(0,1)$ prior for π : completely flat, so that all values of π are equally likely a priori.
- If we have more informative prior beliefs about the value of π, we could choose α and β to reflect that.
- Plots of the Beta pdf for various values of α and β can help inform the prior specification (see R examples).

Expected Value of the Beta

- The expected value of a $\operatorname{Beta}(\alpha, \beta)$ r.v. is

$$
\frac{\alpha}{\alpha+\beta} .
$$

- So if our prior belief is that π is closer to 0 than to 1 , we should choose our hyperparameters α and β such that $\alpha<\beta$.
- If our prior belief is that π is closer to 1 than to 0 , we should set $\alpha>\beta$.
- The mode (location where the pdf reaches its maximum) for the $\operatorname{Beta}(\alpha, \beta) \mathrm{pdf}$ is

$$
\frac{\alpha-1}{\alpha+\beta-2}
$$

Variance of the Beta

- The variance of a $\operatorname{Beta}(\alpha, \beta)$ r.v. is

$$
\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} .
$$

and the standard deviation is the square root of this.

- So if our prior belief is strong that π is near a certain value, we can pick α and β so that this variance is small.
- If our prior belief is less certain, we can pick α and β so that this variance is large.

Choosing the Hyperparameters of the Beta

- The plot_beta function in the bayesrules package can help us pick α and β by trial and error.
- Example: If we believe the value of π is around 0.45 , we could choose many sets of α and β that would yield $E(\pi)=0.45$.
- For example, $\alpha=9$ and $\beta=11 ; \alpha=18$ and $\beta=22 ; \alpha=45$ and $\beta=55$.
- Plotting the $\operatorname{Beta}(45,55)$ pdf shows that this choice of priors indicates we believe that π is very likely to be between 0.3 and 0.6.
- Check: For a $\operatorname{Beta}(45,55)$ distribution, the standard deviation is 0.05 .
- So the interval $(0.3,0.6)$ is within three standard deviations of the mean.

The Binomial Model for the Data

- Political candidate example: Suppose we plan to conduct a poll of 50 randomly selected voters and count how many of these 50 voters support our candidate.
- Given π, the number of the 50 voters who support her (denote this as $Y \mid \pi$) is a binomial $(50, \pi)$ random variable with probability mass function (pmf):

$$
f(y \mid \pi)=P(Y=y \mid \pi)=\binom{50}{y} \pi^{y}(1-\pi)^{50-y}
$$

- This pmf tells us: If the success probability is π, what is the probability that the total number of supportive voters Y equals some value y ?

The Likelihood Using the Binomial Model

- Suppose we take the sample and find that $Y=30$ of the 50 sampled voters support her.
- We could calculate the likelihood of π given $y=30$:

$$
L(\pi \mid y=30)=\binom{50}{30} \pi^{30}(1-\pi)^{50-30}
$$

- This likelihood tells us: Given that $y=30$ of the 50 voters were supportive, what is the likelihood of any particular binomial probability π ?
- Some examples: The likelihood that $\pi=0.6$ given $y=30$ is

$$
L(\pi=0.6 \mid y=30)=\binom{50}{30} 0.6^{30}(0.4)^{20} \approx 0.115
$$

- The likelihood that $\pi=0.5$ given $y=30$ is

$$
L(\pi=0.5 \mid y=30)=\binom{50}{30} 0.5^{30}(0.5)^{20} \approx 0.042
$$

Maximizing the Likelihood with the Binomial Model

- Using calculus, you can show that the likelihood here is maximized when $\pi=0.6$.
- So $\hat{\pi}=0.6$ (which is just the sample proportion $30 / 50$ here) is called the maximum likelihood estimate (MLE) of π for this data set.
- Note that this maximum likelihood estimation approach does not use the prior information to help estimate π; it only uses the information in the sample data.

The Beta Posterior Model

- The prior tells us information about the value of π, based on our prior knowledge.
- Candidate example: We believe a priori that the value of π is near 0.45.
- The likelihood tells us information about the value of π, based on information in our data.
- Candidate example: We believe based on the data that the value of π is near 0.6.
- The posterior distribution balances the information in the prior and the data.
- The posterior uses the data information to update the prior information.
- See the R plots to visually assess the position of the posterior relative to the prior and the likelihood.

Mathematical Development of the Posterior

- The posterior density function is denoted $f(\pi \mid y)$ and by Bayes' Rule, this is

$$
f(\pi \mid y)=\frac{f(\pi) f(y \mid \pi)}{f(y)}=\frac{f(\pi) L(\pi \mid y)}{f(y)}
$$

- The denominator $f(y)$ is just a normalizing constant and we don't actually have to calculate it.
- We can use the fact that the posterior is proportional to the prior times the likelihood, i.e.,

$$
f(\pi \mid y) \propto f(\pi) \times L(\pi \mid y)
$$

- Candidate example:

$$
\begin{gathered}
f(\pi \mid y) \propto \pi^{45-1}(1-\pi)^{55-1} \pi^{30}(1-\pi)^{20} \\
=\pi^{74}(1-\pi)^{74}
\end{gathered}
$$

We Only Need the Kernel of the Posterior

- Notice that we can ignore all of the normalizing constants in the likelihood and the prior.
- This leaves us with only the kernel of the posterior distribution.
- but we recognize this as the kernel of a $\operatorname{Beta}(75,75)$ distribution for π.
- So the posterior distribution of π is $\operatorname{Beta}(75,75)$.

General Formula for the Beta Posterior

- In general, if $Y \mid \pi \sim \operatorname{Bin}(n, \pi)$ (data model) and $\pi \sim \operatorname{Beta}(\alpha, \beta)$ (prior model), then the posterior model will be:

$$
\pi \mid y \sim \operatorname{Beta}(\alpha+y, \beta+n-y)
$$

- So the posterior expected value is

$$
E(\pi \mid y)=\frac{\alpha+y}{\alpha+\beta+n}
$$

- The posterior mode is

$$
\operatorname{Mode}(\pi \mid y)=\frac{\alpha+y-1}{\alpha+\beta+n-2}
$$

and the posterior variance is

$$
\operatorname{Var}(\pi \mid y)=\frac{(\alpha+y)(\beta+n-y)}{(\alpha+\beta+n)^{2}(\alpha+\beta+n+1)}
$$

Possible Point Estimators Based on the Posterior

- Either the posterior mean (expected value) or the posterior mode could be used as an estimator of π.
- An estimator based on the posterior would take into account both the prior information and the data information.

Conjugate Prior

- A conjugate prior is one for which the prior distribution and the posterior distribution have the same family (same functional form), just with different (updated) parameters.
- For example, in the Beta-binomial model, the prior is a Beta and the posterior is also a Beta, so this was a conjugate prior.
- Again, the prior's parameters reflect only our prior knowledge (via α and β) whereas the posterior's parameters reflect both the prior and the data (via α, β, y, and n).

Inference with Beta-Binomial Model

- Consider letting the Bayesian point estimate of π be $\hat{\pi}_{B}=$ the posterior mean.
- The mean of the (posterior) beta distribution is:

$$
\hat{\pi}_{B}=\frac{y+\alpha}{y+\alpha+n-y+\beta}=\frac{y+\alpha}{\alpha+\beta+n}
$$

Note $\hat{\pi}_{B}=\frac{y}{\alpha+\beta+n}+\frac{\alpha}{\alpha+\beta+n}$

$$
=\left[\frac{n}{\alpha+\beta+n}\right]\left(\frac{y}{n}\right)+\left[\frac{\alpha+\beta}{\alpha+\beta+n}\right]\left(\frac{\alpha}{\alpha+\beta}\right)
$$

Inference with Beta/Binomial Model

- So the Bayes estimator $\hat{\pi}_{B}$ is a weighted average of the usual frequentist estimator (sample mean, i.e., the sample proportion of "successes" here) and the prior mean.
- As $n \uparrow$, the sample data are weighted more heavily and the prior information less heavily.
- In general, with Bayesian estimation, as the sample size increases, the likelihood dominates the prior.
- See R example with credit card debt data.

