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The Bayesian Prior

I A prior distribution must be specified in a Bayesian analysis.

I The choice of prior can substantially affect posterior
conclusions, especially when the sample size is not large.

I We now examine several broad methods of determining prior
distributions.
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Conjugate Priors

I We know that conjugacy is a property of a prior along with
a likelihood that implies the posterior distribution will have
the same distributional form as the prior (just with different
parameter(s)).

I We have seen some examples of conjugate priors:
Data/Likelihood Prior

1. Bernoulli → Beta for p
2. Poisson → Gamma for λ
3. Normal → Normal for µ
4. Normal → Inverse gamma for σ2
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Conjugate Priors

Other examples:

1. Multinomial → Dirichlet for p1, p2, . . . , pk

2. Negative Binomial → Beta for p

3. Uniform(0, θ) → Pareto for upper limit

4. Exponential → Gamma for β

5. Gamma (β unknown) → Gamma for β

6. Pareto (α unknown) → Gamma for α

7. Pareto (β unknown) → Pareto for β
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Conjugate Priors: Exponential Family

I Consider the family of distributions known as the
one-parameter exponential family.

I This family consists of any distribution whose p.d.f. (or
p.m.f.) can be written as:

f (x |θ) = e [t(x)u(θ)]r(x)s(θ)

where t(x) and r(x) do not depend on the parameter θ and
u(θ) and s(θ) do not depend on x .

I Note that any such density can be written as

f (x |θ) = e{t(x)u(θ)+ln[r(x)]+ln[s(θ)]}
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Conjugate Priors: Exponential Family

I If we observe an iid sample X1, . . . ,Xn, the joint density of the
data is thus

f (x|θ) = e
{u(θ)

nP
i=1

t(xi )+
nP

i=1
ln[r(xi )]+n ln[s(θ)]}

I Consider a prior for θ (with the prior parameters k and γ)
having the form:

p(θ) = c(k, γ)e{ku(θ)γ+k ln[s(θ)]}
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Conjugate Priors: Exponential Family

Then the posterior is

π(θ|x) ∝ f (x|θ)p(θ)

∝ exp

{
u(θ)

∑
t(xi ) + n ln[s(θ)] + ku(θ)γ + k ln[s(θ)]

}

= exp

{
u(θ)

[∑
t(xi ) + kγ

]
+ (n + k) ln[s(θ)]

}

= exp

{
(n + k)u(θ)

[∑
t(xi ) + kγ

n + k

]
+ (n + k) ln[s(θ)]

}

which is of the same form as the prior, except with “k”= n + k

and “γ”=

∑
t(xi ) + kγ

n + k
.

⇒ If our data are iid from a one-parameter exponential family,
then a conjugate prior will exist.
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Conjugate Priors

I Conjugate priors are mathematically convenient.

I Sometimes they are quite flexible, depending on the specific
hyperparameters we use.

I But they reflect very specific prior knowledge, so we should be
wary of using them unless we truly possess that prior
knowledge.
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Uninformative Priors

I These priors intentionally provide very little specific
information about the parameter(s).

I A classic uninformative prior is the uniform prior.

I A proper uniform prior integrates to a finite quantity.

I Example 1: For Bernoulli(θ) data, a uniform prior on θ is

p(θ) = 1, 0 ≤ θ ≤ 1.

I This makes sense when θ has bounded support.
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Uninformative Priors

I Example 2: Consider N(0, σ2) data. If it is “reasonable” to
assume, that, say σ2 < 100, we could use the uniform prior

p(σ2) =
1

100
, 0 ≤ σ2 ≤ 100

(even though σ2 is not intrinsically bounded).

I An improper uniform prior integrates to ∞:

I Example 3: N(µ, 1) data with

p(µ) = 1, −∞ < µ <∞.

I This is fine as long as the resulting posterior is proper.

I But be careful: Sometimes an improper prior will yield an
improper posterior.
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