
Invariance Property

I A problem with the uniform prior is that its “lack of
information” is not invariant under transformation.

I Example 1 again: Consider the odds of success τ =
θ

1− θ
.

I Then if p(θ) = 1, with the Jacobian

J =
∣∣∣ d

dτ

( τ

1 + τ

)∣∣∣ =
1

(1 + τ)2
,

then p(τ) =
1

(1 + τ)2
, 0 < τ < ∞ :



Invariance Property

I Picture:
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I This same prior is now an “informative” prior for the odds.

I (However, note that P(0 < τ < 1) = P(τ > 1) = 0.5.)



Jeffreys Prior

I Jeffreys (1961) developed a class of priors that were invariant
under transformation.

I For a single parameter θ and data having joint density f (x|θ),
the Jeffreys prior

pJ(θ) ∝
[
−E

( d2

dθ2
ln f (x|θ)

)]1/2
= [I (θ)]1/2

(square root of Fisher information)

I For a parameter vector θ:

pJ(θ) ∝
[
E

{[ ∂

∂θ
ln f (x|θ)

]′[ ∂

∂θ
ln f (x|θ)

]}]1/2



Jeffreys Prior

I Example 1 yet again: For X1,X2, . . . ,Xn
iid∼ Bernoulli(θ),

f (x|θ) =

(
n

y

)
θy (1− θ)n−y , 0 ≤ θ ≤ 1,

where y =
n∑

i=1
xi .

⇒ ln f (x|θ) = ln

(
n

y

)
+ y ln(θ) + (n − y) ln(1− θ)

d

dθ
ln f (x|θ) =

y

θ
− n − y

1− θ

d2

dθ2
ln f (x|θ) = − y

θ2
− n − y

(1− θ)2



Jeffreys Prior

⇒ −E
[ d2

dθ2
ln f (x|θ)

]
=

nθ

θ2
+

n − nθ

(1− θ)2
=

n

θ
+

n

1− θ

=
n(1− θ) + nθ

θ(1− θ)
=

n

θ(1− θ)

⇒ pJ(θ) ∝
[ n

θ(1− θ)

]1/2

⇒ pJ(θ) ∝ θ−1/2(1− θ)−1/2 = θ
1/2−1(1− θ)

1/2−1



Jeffreys Prior

⇒ Jeffreys prior for θ is a Beta(1/2, 1/2):
Picture:
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Jeffreys Prior

I Invariance: If pJ(θ) is the Jeffreys prior for θ, for any
transformation φ = g(θ),

pJ(θ) = pJ(φ)
∣∣∣dφ

dθ

∣∣∣.



Other Noninformative Priors

I Other methods for noninformative priors include
I Bernardo’s reference prior, which seeks a prior that will

maximize the discrepancy between the prior and the posterior
and minimize the discrepancy between the likelihood and the
posterior (a “dominant likelihood prior”).

I An improper prior, in which
∫
Θ

p(θ) = ∞.

I A highly diffuse proper prior, e.g., for normal data with µ
unknown, a N(0, 1000000) prior for µ. (This is very close to
the improper prior p(µ) ∝ 1.)



Informative Prior Forms

I Informative prior information is usually based on expert
opinion or previous research about the parameter(s) of
interest.

Power Priors

I Suppose we have access to previous data x0 that is
analogous to the data we will gather.

I Then our “power prior” could be

p(θ|x0, a0) ∝ p(θ)[L(θ|x0)]
a0

where p(θ) is an ordinary prior and a0 ∈ [0, 1] is an exponent
measuring the influence of the previous data.



Power Priors

I As a0 → 0, the influence of the previous data is lessened.

I As a0 → 1, the influence of the previous data is strengthened.

I The posterior, given our actual data x, is then

π(θ|x, x0, a0) ∝ p(θ|x0, a0)L(θ|x)

I To avoid specifying a single a0 value: We could put a, say,
beta distribution p(a0) on a0 and average over values of a0 in
[0, 1]:

p(θ|x0) =

∫ 1

0
p(θ)[L(θ|x0)]

a0p(a0) da0



Prior Elicitation

I A challenge is putting “expert opinion” into a form where it
can be used as a prior distribution.
Strategies:

I Requesting guesses for several quantiles (maybe {0.1, 0.25,
0.5, 0.75, 0.9}?) from a few experts.

I For a normal prior, note that a quantile q(α) is related to the
z-value Φ−1(α) by:

q(α) = mean + Φ−1(α)× (std. dev.)

I Via regression on the provided [q(α),Φ−1(α)] values, we can
get estimates for the mean and standard deviation of the
normal prior.



Prior Elicitation

I Another strategy asks the expert to provide a “predictive
modal value” (most “likely” value) for the parameter.

I Then a rough 67% interval is requested from the expert.

I With a normal prior, the length of this interval is twice the
prior standard deviation.

I For a prior on a Bernoulli probability, the “most likely”
probability of success is often “clear”.


