A More Complicated Gibbs Example (Changepoint)

Then the posterior is $\pi(\lambda, \phi, k|\mathbf{x})$

 $= \lambda^{\alpha + \sum_{i=1}^{k} x_i - 1} e^{-(\beta + k)\lambda} \phi^{\gamma + \sum_{k=1}^{n} x_i - 1} e^{-(\delta + n - k)\phi}$

$$\propto L(\lambda, \phi, k|\mathbf{x})p(\lambda)p(\phi)p(k)
= \left[\prod_{i=1}^{k} \frac{e^{-\lambda}\lambda^{x_i}}{x_i!}\right] \left[\prod_{i=k+1}^{n} \frac{e^{-\phi}\phi^{x_i}}{x_i!}\right] \left[\frac{\beta^{\alpha}}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}\right] \left[\frac{\delta^{\gamma}}{\Gamma(\gamma)}\phi^{\gamma-1}e^{-\delta\phi}\right] \left[\frac{1}{n}\right]
\propto e^{-k\lambda}\lambda^{\sum_{i=1}^{k} x_i} e^{-(n-k)\phi}\phi^{\sum_{i=1}^{n} x_i}\lambda^{\alpha-1}e^{-\beta\lambda}\phi^{\gamma-1}e^{-\delta\phi}$$

So full conditionals are:

$$\lambda | \phi, k \sim \operatorname{gamma}(\alpha + \sum_{i=1}^k x_i, \beta + k)$$
 $\phi | \lambda, k \sim \operatorname{gamma}(\gamma + \sum_{i=k+1}^n x_i, \delta + n - k)$

A More Complicated Gibbs Example (Changepoint)

To get the full conditional for k, note the joint density of the data is:

$$p(\mathbf{x}|k,\lambda,\phi) = \left[\prod_{i=1}^{k} \frac{e^{-\lambda} \lambda^{x_i}}{x_i!}\right] \left[\prod_{i=k+1}^{n} \frac{e^{-\phi} \phi^{x_i}}{x_i!}\right]$$

$$= \left[\prod_{i=1}^{n} \frac{1}{x_i!}\right] e^{k(\phi-\lambda)} e^{-n\phi} \lambda^{\sum_{i=1}^{k} x_i} \left[\prod_{i=k+1}^{n} \phi^{x_i}\right] \left[\prod_{i=1}^{k} \phi^{X_i} \frac{\phi^{x_i}}{\phi^{\sum_{i=1}^{k} x_i}}\right]$$

$$= \left[\prod_{i=1}^{n} \frac{e^{-\phi} \phi^{x_i}}{x_i!}\right] \left[e^{k(\phi-\lambda)} \left(\frac{\lambda}{\phi}\right)^{\sum_{i=1}^{k} x_i}\right]$$

$$= f(\mathbf{x}, \phi) g(\mathbf{x}|k)$$

A More Complicated Gibbs Example (Changepoint)

By Bayes' Law, for any particular value k^* of k,

$$p(k^*|\mathbf{x}) = \frac{f(\mathbf{x}, \phi)g(\mathbf{x}|k^*)p(k^*)}{\sum\limits_{k=1}^{n} f(\mathbf{x}, \phi)g(\mathbf{x}|k)p(k)}$$

Since p(k) = 1/n (constant), we have

$$p(k^*|\mathbf{x}) = p(k^*|\mathbf{x}, \lambda, \phi) \propto \frac{g(\mathbf{x}|k^*)}{\sum_{k=1}^{n} g(\mathbf{x}|k)}$$

(full conditional for k)

- ▶ This ratio defines a probability vector for k that we use at each iteration to sample a value of k from $\{1, 2, ..., n\}$.
- see R example (Coal mining data)

Another Gibbs Example (Normal Mixture)

Example 4 (Monkey Eye Data): X_1, \ldots, X_{48} are a random sample of peak sensitivity wavelength measurements from a monkey's eyes (Bowmaker et al., 1985)

► The data are assumed to come from a mixture of two normal distributions, i.e.,

$$X_i \stackrel{\text{indep}}{\sim} N(\lambda_{T_i}, \tau) \text{ and } T_i \sim \text{Bernoulli}(p)$$

where T_i (= 1 or 2) indicates the true group the ith observation came from.

- ▶ λ_1 = mean of group 1, λ_2 = mean of group 2, τ = common **precision** parameter (reciprocal of variance)
- ► For computational reasons, we let $\lambda_1 < \lambda_2$ and define the "mean shift" $\theta = \lambda_2 \lambda_1$, $\theta > 0$.

Another Gibbs Example (Normal Mixture)

▶ We use the following independent noninformative priors on λ_1 , θ , τ , and p:

$$egin{aligned}
ho &\sim \mathsf{beta}(1,1) \ heta &\sim {\it N}(0, au=10^{-6}) \emph{I}_{[heta>0]} \ (\Rightarrow \sigma^2=10^6) \ \lambda_1 &\sim {\it N}(0, au=10^{-6}) \ au &\sim \mathsf{gamma}(0.001,0.001) \end{aligned}$$

- ➤ Do example in WinBUGS with 1000-draw burn-in and then 10000 further draws.
- See convergence diagnostics in WinBUGS.