
Metropolis-Hastings Sampling

I When the full conditionals for each parameter cannot be
obtained easily, another option for sampling from the posterior
is the Metropolis-Hastings (M-H) algorithm.

I The M-H algorithm also produces a Markov chain whose
values approximate a sample from the posterior distribution.

I For this algorithm, we need the form (except for a normalizing
constant) of the posterior π(·) for θ, the parameter(s) of
interest.

I We also need a proposal (or instrumental) distribution q(·|·)
that is easy to sample from.



Metropolis-Hastings Sampling

I The M-H algorithm first specifies an initial value for θ, say
θ[0]. Then:

I After iteration t, suppose the most recently drawn value is
θ[t].

I Then sample a candidate value θ∗ from the proposal density.

I Let the (t + 1)-st value in the chain be

θ[t+1] =

{
θ∗ with probability min{a(θ∗,θ[t]), 1}
θ[t] with probability 1 −min{a(θ∗,θ[t]), 1}

where

a(θ∗,θ[t]) =
π(θ∗)

π(θ[t])

q(θ[t]|θ∗)
q(θ∗|θ[t])

is the “acceptance ratio.”



Metropolis-Hastings Sampling

I In practice we would accomplish this by sampling
U [t] ∼ U(0, 1) and choosing θ[t+1] = θ∗ if a(θ∗,θ[t]) > u[t];
otherwise choose θ[t+1] = θ[t].

I Note that if the proposal density q(·|·) is symmetric such that
q(θ[t]|θ∗) = q(θ∗|θ[t]), then the acceptance ratio is simply

π(θ∗)

π(θ[t])
.



Metropolis-Hastings Example

Example 5 (Sparrow data): We gather data on a sample of 52
sparrows:

Xi = age of sparrow (to nearest year)

Yi = Number of offspring that season

I We expect that the offspring number rises and then falls with
age, so we assume a quadratic trend.

I We model the number of offspring at a given age x as Poisson:

Y |x ∼ Pois(µx)



Metropolis-Hastings Example

I Since we know µx must be positive, we use the model:

E [Y |x ] = eβ0+β1x+β2x2

I This Poisson regression model is a generalized linear model
(GLM).

I Our parameter of interest is β = (β0, β1, β2).

I But note that conjugate priors do not exist for non-normal
GLMs.

I We will use the M-H algorithm to sample from our posterior.



Metropolis-Hastings Example

I Let the prior on β be multivariate normal with independent
components:

β ∼ MVN(0,Σ), where Σ = 100× I3

I We will choose our proposal density to be multivariate
normal with mean vector β[t] (the current value).

I The covariance matrix of the proposal density is sort of a
tuning parameter. We will choose

σ̂2(X
′
X)−1 where σ̂2 = var{ln(y1 + 0.5), . . . , ln(yn + 0.5)}.

I We can adjust this if our acceptance rate is too high or too
low.

I Usually we like an acceptance rate between 20% and 50%.



Metropolis-Hastings Example

I Since our proposal density is symmetric, our acceptance ratio
is simply

π(β∗)

π(β[t])
=

L(β∗|X, y)p(β∗)

L(β[t]|X, y)p(β[t])

=

n∏
i=1

dpois(yi , exp[xT
i β∗])

3∏
j=1

dnorm(β∗j , 0, 10)

n∏
i=1

dpois(yi , exp[xT
i β[t]])

3∏
j=1

dnorm(β
[t]
j , 0, 10)

where the Poisson density dpois and the normal density
dnorm can be found easily in R.

I See R example with real sparrow data.



Other Metropolis-Hastings Issues

I In practice, it is recommended to check the acceptance rate
(the proportion of proposed β∗ values that are “accepted”).

I We also check the serial correlation of the
{

β
[t]
j

}
values using

a plot of the autocorrelation function.

I If the values do not “appear” independent, we can alleviate
this by choosing every k th value in the chain as our posterior
sample (thinning).


