
Issues with Bayes Factors

I Note: When an improper prior is used for θ, the Bayes
Factor is not well-defined.

I Note B(x) =
Posterior odds for M1

Prior odds for M1
, and the “prior odds” is

meaningless for an improper prior.

I Gill’s Sec. 7.3.2 suggests several methods (Local Bayes
factors, Intrinsic Bayes Factors, Partial Bayes Factors,
Fractional Bayes Factors), none of them ideal, to define types
of Bayes Factors with improper priors.

I One criticism of Bayes Factors is the (implicit) assumption
that one of the competing models (M1 or M2) is correct.

I Another criticism is that the Bayes Factor depends heavily on
the choice of prior.



The Bayesian Information Criterion

I The Bayesian Information Criterion (BIC ) can be used (as a
substitute for the Bayes factor) to compare two (or more)
models.

I Conveniently, the BIC does not require specifying priors.

I For parameters θ and data x:

BIC = −2 ln L(θ̂|x) + p ln(n)

where p is the number of free parameters in the model, and
L(θ̂|x) is the maximized likelihood, given observed data x.

I Good models have relatively small BIC values:
I A small value of −2 ln L(θ̂|x) indicates good fit to the data;
I a small value of the “overfitting penalty” term p ln(n)

indicates a simple, parsimonious model.



The Bayesian Information Criterion

I To compare two models M1 and M2, we could calculate

S = −1

2
[BICM1 − BICM2 ]

= ln L(θ̂1|x)− ln L(θ̂2|x)−
1

2
(p1 − p2) ln(n)

I A small value of S would favor M2 here and a large S would
favor M1.

I As n →∞,
S − ln(B(x))

ln(B(x))
→ 0

and for large n,

BICM1 − BICM2 = −2S ≈ −2 ln(B(x)).



The Bayesian Information Criterion

I Note that differences in BIC ’s can be used to compare several
nonnested models.

I They should be trusted as a substitute for Bayes Factors only
when (1) no reliable prior information is available and (2)
when the sample size is quite large.

I See R examples: (1) Calcium data example and (2) Regression
example on Oxygen Uptake data set.



CHAPTER 10 SLIDES BEGIN HERE



Hierarchical Models

I In hierarchical Bayesian estimation, we not only specify a
prior on the data model’s parameter(s), but specify a further
prior (called a hyperprior) for the hyperparameters.

I This more complicated prior structure can be useful for
modeling hierarchical data structures, also called multilevel
data.

I Multilevel data involves a hierarchy of nested populations, in
which data could be measured for several levels of
aggregation.

Examples:

I We could measure white-blood-cell counts for numerous
patients within several hospitals.

I We could measure test scores for numerous students within
several schools.



Hierarchical Bayes Estimation

I Assume we have data x from density f (x|θ) with a parameter
of interest θ.

I Typically we would choose a prior for θ that depends on some
hyperparameter(s) ψ.

I Instead of choosing fixed values for ψ, we could place a
hyperprior p(ψ) on it.

I Note that this hierarchy could continue for any number of
levels, but it is rare to need more than two levels for the prior
structure.



Hierarchical Bayes Estimation

I Our posterior is then:

π(θ,ψ|x) ∝ L(θ|x)p(θ|ψ)p(ψ)

I Posterior inference about θ is based on the marginal posterior
for θ:

π(θ|x) =

∫
ψ

π(θ,ψ|x) dψ

I Except in simple situations, such analysis typically requires
MCMC methods.


