Hierarchical Bayes Example 1

» Example 1 (Economic data): Six economic indicators are
measured at 44 timepoints xi, ..., xas (labeled 1,2,...,44).

» We model each indicator Y;,i =1,...,6 as a function of
(centered) time as follows:

Yij ~ N(Boi + Brixj, T)
Boi ~ N(1p,, 73,)

Bii ~ Nupys )
T ~ gamma(0.01,0.01)

pa, ~ N(0,0.01), pug, ~ N(0,0.01)
T3, ~ gamma(0.01,0.01), 73, ~ gamma(0.01,0.01)

» See WinBUGS example for inference on (p; and [1;,
i=1,2,...,6.



Hierarchical Bayes Example 2

» Example 2 (ltalian marriage data): Data are marriage counts
(per 1000) in Italy for years from 1936 to 1951 (before,
during, and after World War II).

» We use a Poisson-Gamma hierarchical model that allows the
Poisson mean to vary across years:

Yi ~ Pois(\;)

Ai ~ gamma(a, 3)
a ~ gamma(A, B)
B ~ gamma(C, D)

and Yi|A1,..., Ya|A, conditionally independent.

» Note this allows the \;'s to be different, but following the
same distribution.



Hierarchical Bayes Example 2

» It can be shown the full conditionals are:

)\,-|a,ﬁ,y ~ gamma(yi + o, 1+ /8)
alB, A,y ~ not a standard distribution
Bla, A,y ~ not a standard distribution

» A Gibbs sampler can be implemented, e.g., in WinBUGS.

» The inference is on the A1,..., A,



Exchangeability

» Recall for a fixed n, X1, Xz, ..., X, are exchangeable if
p(Xi,..., Xn) = p(Xny, ..., Xz,) for any permutation
(71,...,mn) of (1,...,n). (Finite exchangeability)

» Infinite exchangeability implies that every finite subset of
an infinite sequence Xi, Xy, ... is exchangeable.

» From de Finetti's theorem: Exchangeable = iid (True in
infinite case; approximately true in finite case)



Exchangeability
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Consider multilevel data, where the observations come from,
say, m groups:
Data: Y1,Y2,..., Y, where each

YJ:[Y]'J”YI‘IJJ], forj:]'""7m'

We can often treat Yy;,..., Yy as exchangeable.
It then makes sense to treat the data in group j as
conditionally iid given some group-specific parameter 0;:

iid
Yijs -5 Yailt ~ p(y16))

Next, we can treat 04, ...,0,, as exchangeable, if the groups
are a random sample from a larger population of groups.
Again by de Finetti's theorem:

01, ..., 0m|d % p(6]0)



Exchangeability

» In this m-sample data analysis:

p(Y1), - - - Yn;j|0;) describes the within-group sampling variability
p(01,...,0m|¢p) describes the between-group sampling variability
p(¢) describes uncertainty about ¢

» We could continue the hierarchy, putting hyperpriors on the
parameters in p(¢), but eventually we must stop.

» The highest-level prior is often given a diffuse form.



A Hierarchical Normal Model for Data from Several Groups

» Assume we have random samples from m populations, having
sample sizes ny, no, ..., Npy.

» We specify the hierarchical data model:

2 ||d

Yijso ooy Yojlpj, 0% ~ (1j,0%)  (within group-model)

2 ||d

pile, T (¢,7%) (between-group model)

» This model assumes variability across group means, but group
variances are assumed to be constant (= 02) across groups.



A Hierarchical Normal Model for Data from Several Groups

» We place (independent) priors on the unknown parameters
¢, 72 and o2
1/0° ~ gamma(v1/2,v112/2)
1/72 ~ gamma(n1/2,m72/2)
¢ ~ N(¢0,7%)



A Hierarchical Normal Model for Data from Several Groups

» We must approximate the joint posterior

ﬂ_(,ulv M 7/’1/m7¢7 T27U2|y17' b 7ym)

» We will derive the full conditional for each parameter and use
the Gibbs sampler to iteratively sample from these.
» Note the joint posterior is
X P(Y1a e 7ym‘:u’17 e 7,u’m7 d)a 7-27 02)
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» Note that conditional on y; and 02, the joint density of the
Yij's does not depend on ¢ and 72,



