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I From the above, we see the full conditionals for φ and τ2

satisfy:

p(φ|µ1, . . . , µm, τ2, σ2, y1, . . . , ym) ∝ p(φ)
m∏

j=1

p(µj |φ, τ2)

p(τ2|µ1, . . . , µm, φ, σ2, y1, . . . , ym) ∝ p(τ2)
m∏

j=1

p(µj |φ, τ2)
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I It can be shown that the full conditional for φ is normal and
the full conditional for τ2 is inverse gamma. Specifically:

φ|µ1, . . . , µm, τ2 ∼ N
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I Similarly, the full conditional for any µj satisfies:

p(µj |φ, τ2, σ2, y1, . . . , ym) ∝ p(µj |φ, τ2)

nj∏
i=1

p(yij |µj , σ
2)

I Conditional on φ, τ2, σ2, µj is independent of the other µ’s
and of the data in the other groups.



A Hierarchical Normal Model for Data from Several Groups

I Then it can be shown:
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I Similarly, the full conditional for σ2 is conditionally
independent of {φ, τ2}, given {y1, . . . , ym, µ1, . . . , µm}:

p(σ2|µ1, . . . , µm, y1, . . . , ym) ∝ p(σ2)
m∏
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Collecting terms, this is an inverse gamma, and:
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Example: Data from Several Groups

I Example 3 (Math scores): The data are math scores for
10th-grade students from m = 100 different urban high
schools.

I The sample sizes n1, . . . , nm are quite different across schools.
I The nationwide total (between plus within) variance for this

test is 100, and the nationwide mean is 50.
I We choose the priors

1/σ2 ∼ gamma(1/2, 100/2)

1/τ2 ∼ gamma(1/2, 100/2)

φ ∼ N(50, 25)

I We can then repeatedly cycle through

φ[s], τ2[s], σ2[s], µ
[s]
1 , . . . , µ

[s]
m (for s = 1, . . . ,S) using their full

conditionals and the Gibbs sampler.
I See R example with real schools data.



Bayesian Estimation and Shrinkage

I The posterior mean of µj (given φ, τ2, σ2 and yj) is

E [µj |yj , φ, τ2, σ2] =
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ȳj +

(
1/τ2

nj/σ2 + 1/τ2

)
φ

I So the posterior mean of µj is pulled away from ȳj and
toward φ, the mean of the distribution of all the µj ’s.

I This is called shrinkage.

I How much is each µj shrunk? It depends on nj .

I For schools with a large sample size (large nj), shrinkage is
minimal.

I For schools with a few students (small nj), shrinkage is
substantial.
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I Example 1: (Schools 82 vs. 46)

Data: ȳ82 = 38.76, n82 = 5, µ̂82 = 42.53

ȳ46 = 40.18, n46 = 21, µ̂46 = 41.31

I Note φ̂ = 48.12.

I For school 82, we have substantial shrinkage toward φ̂.

I For school 46, we have less shrinkage toward φ̂.

I We might then rank school 82 ahead of school 46, because we
doubt that ȳ82 is a good estimate of school 82’s true mean,
being based on only 5 students.
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I Example 2: (Schools 67 and 51)

Data: ȳ67 = 65.02, n67 = 4, µ̂67 = 57.14

ȳ51 = 64.37, n51 = 19, µ̂51 = 61.84

I School 67 is shrunk down more toward φ̂.

I We expect school 51 to have a higher true mean even though
its sample mean was lower.

I Intuition: Whom would you trust more to make a free throw,
someone who has made 4 out of 4, or someone who has made
96 out of 100?


