A Hierarchical Normal Model for Data from Several Groups

» From the above, we see the full conditionals for ¢ and 72

satisfy:
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A Hierarchical Normal Model for Data from Several Groups

» It can be shown that the full conditional for ¢ is normal and
the full conditional for 72 is inverse gamma. Specifically:
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» Similarly, the full conditional for any y; satisfies:
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» Conditional on ¢, 72, 02, wj is independent of the other y's
and of the data in the other groups.



A Hierarchical Normal Model for Data from Several Groups

» Then it can be shown:
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» Similarly, the full conditional for o2 is conditionally
independent of {4, 72}, given {y1,...,Ym fi1, -+, tm}:

m
p(02|M17"'aum7y17'--7ym HHP ylj|:u‘j7
j=1li=1
R . 1)
. (02)71/1/2+1e—l;1;’22 (0_2)722"16 202 %:Zi:(yf 1)

Collecting terms, this is an inverse gamma, and:
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Example: Data from Several Groups

>

Example 3 (Math scores): The data are math scores for
10th-grade students from m = 100 different urban high
schools.

The sample sizes nq, ..., n, are quite different across schools.
The nationwide total (between plus within) variance for this
test is 100, and the nationwide mean is 50.

We choose the priors

1/0% ~ gamma(1/2,100/2)
1/7% ~ gamma(1/2,100/2)
¢ ~ N(50,25)

We can then repeatedly cycle through
¢[5],T2[5],02[5],M[ls], e ,,uEf,] (for s =1,...,5) using their full
conditionals and the Gibbs sampler.

> See R example with real schools data.



Bayesian Estimation and Shrinkage

» The posterior mean of 1 (given ¢,72,02 and y;) is
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» So the posterior mean of y; is pulled away from y; and
toward ¢, the mean of the distribution of all the y;’s

» This is called shrinkage.
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» How much is each p; shrunk? It depends on n;.

> For schools with a large sample size (large n;), shrinkage is
minimal.

» For schools with a few students (small n;), shrinkage is
substantial.



Bayesian Estimation and Shrinkage

» Example 1: (Schools 82 vs. 46)

Data: ygo = 38.76, ngp =5, [igop = 42.53
ag = 40.18, nag = 21, fiag = 41.31

» Note ¢ = 48.12.
» For school 82, we have substantial shrinkage toward b.
» For school 46, we have less shrinkage toward ¢.

» We might then rank school 82 ahead of school 46, because we
doubt that yg is a good estimate of school 82's true mean,
being based on only 5 students.



Bayesian Estimation and Shrinkage

» Example 2: (Schools 67 and 51)

Data: ys7 = 65.02, ng7 =4, [267 =57.14
¥51 = 64.37, ns1 =19, [is; = 61.84

» School 67 is shrunk down more toward qg

» We expect school 51 to have a higher true mean even though
its sample mean was lower.

» Intuition: Whom would you trust more to make a free throw,
someone who has made 4 out of 4, or someone who has made
96 out of 1007



