Bayesian Learning

» We can use the Bayesian approach to update our information
about the parameter(s) of interest sequentially as new data
become available.

» Suppose we formulate a prior for our parameter  and observe
a random sample x3.

» Then the posterior is

m(0]x1) oc p(0)L(0]x1)

» Then we observe a new (independent) sample xj.



Bayesian Learning

» We can use our previous posterior as the new prior and derive
a new posterior:

m(0|x1,%2) o< w(0|x1)L(0|x2)
x p(O)L(B]x1)L(B]x2)
= p(0)L(0]x1,x2)
(since x1,x2 independent)

» Note this is the same posterior we would have obtained had
x1 and X, arrived at the same time!

» This “sequential updating” process can continue indefinitely
in the Bayesian setup.



CHAPTER 3 SLIDES BEGIN HERE



Why Normal Models?

» Why is it so common to model data using a normal
distribution?

» Approximately normally distributed quantities appear often in
nature.

» CLT tells us any variable that is basically a sum of
independent components should be approximately normal.

» Note X and S? are independent when sampling from a normal
population — so if beliefs about the mean are independent of
beliefs about the variance, a normal model may be
appropriate.



Why Normal Models?

» The normal model is analytically convenient (exponential
family, sufficient statistics X and S$2)
» Inference about the population mean based on a normal

model will be correct as n — oo even if the data are truly
non-normal.

» When we assume a normal likelihood, we can get a wide class
of posterior distributions by using different priors.



A Conjugate analysis with Normal Data (variance known)

» Simple situation: Assume data X1, ..., X, are iid N(u,c?),
with g unknown and 2 known.

» We will make inference about pu.
» The likelihood is

L(ulx) = H(27ra )"e” 37 (1)’

» A conjugate prior for p is 1 ~ N(§,72):

1
p(n) = (2r72) Ve 272 (170



A Conjugate analysis with Normal Data (variance known)

So the posterior is:

m(plx) o< L(plx)p(1e)
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A Conjugate analysis with Normal Data (variance known)

So the posterior is:
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(where k is some constant)






A Conjugate analysis with Normal Data (variance known)

» Hence the posterior for p is simply a normal distribution with
mean

and variance )
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» The precision is the reciprocal of the variance.
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» ...and — + — is the posterior precision.
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