
Bayesian Learning

I We can use the Bayesian approach to update our information
about the parameter(s) of interest sequentially as new data
become available.

I Suppose we formulate a prior for our parameter θ and observe
a random sample x1.

I Then the posterior is

π(θ|x1) ∝ p(θ)L(θ|x1)

I Then we observe a new (independent) sample x2.



Bayesian Learning

I We can use our previous posterior as the new prior and derive
a new posterior:

π(θ|x1, x2) ∝ π(θ|x1)L(θ|x2)

∝ p(θ)L(θ|x1)L(θ|x2)

= p(θ)L(θ|x1, x2)

(since x1, x2 independent)

I Note this is the same posterior we would have obtained had
x1 and x2 arrived at the same time!

I This “sequential updating” process can continue indefinitely
in the Bayesian setup.



CHAPTER 3 SLIDES BEGIN HERE



Why Normal Models?

I Why is it so common to model data using a normal
distribution?

I Approximately normally distributed quantities appear often in
nature.

I CLT tells us any variable that is basically a sum of
independent components should be approximately normal.

I Note X̄ and S2 are independent when sampling from a normal
population — so if beliefs about the mean are independent of
beliefs about the variance, a normal model may be
appropriate.



Why Normal Models?

I The normal model is analytically convenient (exponential
family, sufficient statistics X̄ and S2)

I Inference about the population mean based on a normal
model will be correct as n →∞ even if the data are truly
non-normal.

I When we assume a normal likelihood, we can get a wide class
of posterior distributions by using different priors.



A Conjugate analysis with Normal Data (variance known)

I Simple situation: Assume data X1, . . . ,Xn are iid N(µ, σ2),
with µ unknown and σ2 known.

I We will make inference about µ.

I The likelihood is

L(µ|x) =
n∏

i=1

(2πσ2)−
1/2e−

1
2σ2 (xi−µ)2

I A conjugate prior for µ is µ ∼ N(δ, τ2):

p(µ) = (2πτ2)−
1/2e−

1
2τ2 (µ−δ)2



A Conjugate analysis with Normal Data (variance known)

So the posterior is:

π(µ|x) ∝ L(µ|x)p(µ)

∝
n∏

i=1

e−
1

2σ2 (xi−µ)2e−
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2τ2 (µ−δ)2
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1

τ2
(µ2 − 2µδ + δ2)
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A Conjugate analysis with Normal Data (variance known)

So the posterior is:

π(µ|x) ∝ exp
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(where k is some constant)



A Conjugate analysis with Normal Data (variance known)

Hence π(µ|x) ∝ exp
{
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A Conjugate analysis with Normal Data (variance known)

I Hence the posterior for µ is simply a normal distribution with
mean

δ
τ2 + nx̄

σ2

1
τ2 + n

σ2

and variance (
1

τ2
+

n

σ2

)−1

=
τ2σ2

σ2 + nτ2

I The precision is the reciprocal of the variance.

I Here,
1

τ2
is the prior precision . . .

I
n

σ2
is the data precision . . .

I . . . and
1

τ2
+

n

σ2
is the posterior precision.


