A Conjugate analysis with Normal Data (variance known)

» Hence the posterior for p is simply a normal distribution with
mean

and variance )
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» The precision is the reciprocal of the variance.
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» ...and — + — is the posterior precision.
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A Conjugate analysis with Normal Data (variance known)

» Note the posterior mean E[u|x] is simply
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a combination of the prior mean and the sample mean.
» If the prior is highly precise, the weight is large on §.

» If the data are highly precise (e.g., when n is large), the
weight is large on X.
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» Clearly as n — oo, E[u|x] = X, and var[u|x] ~ % if we

choose a large prior variance 72.

» This implies that for 72 large and n large, Bayesian and
frequentist inference about p will be nearly identical.



A Conjugate analysis with Normal Data (mean known)

» Now suppose X, ..., X, are iid N(u,o?) with y known and

o2 unknown.

» We will make inference about o2.
» Our likelihood
n —5malh 3 (i-n)’]
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Let W denote the sufficient statistic 1 S°(X; — u)2.
The conjugate prior for o2 is the inverse gamma distribution.
If arv. Y ~ gamma, then 1/Y ~ inverse gamma (IG).
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The prior for o2 is

p(0?) = rfa)(az)—m*”e—(ﬂ/”z) for 6 > 0

where o > 0,6 > 0.



A Conjugate analysis with Normal Data (mean known)

» Note the prior mean and variance are

E(c?) = % provided that o > 1

2
var(o?) = (0 1;2(& Y provided that o > 2

» So the posterior for o2 is:

m(o?|x) < L(o?[x)p(0?)
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» Hence the posterior is clearly an IG(a + 5, 3 4 Sw)
distribution, where w = 1 3™ (x; — )2 Conjugate!



A Conjugate analysis with Normal Data (mean known)

» How to choose the prior parameters o and 37

» Note

+2and 3= E((jz){[E(U2)]2 + 1}
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so we could make guesses about E(0?) and var(c?) and use
these to determine « and S3.



A Model for Normal Data (mean and variance both

unknown)

» When Xi,..., X, are iid N(u,o?) with both y, o2 unknown,
the conjugate prior for the mean explicitly depends on the
variance:
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» The prior parameter sy measures the analyst's confidence in
the prior specification.

» When sg is large, we strongly believe in our prior.



A Model for Normal Data (mean and variance both

unknown)

The joint posterior for (u,0?) is
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Note the second part is simply a normal kernel for p.



A Model for Normal Data (mean and variance both

unknown)

» To get the posterior for 02, we integrate out s
2 > 2
m(0%[x) =/ p(u, o°|x) dp
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since the second piece (which depends on 1) just integrates to
a normalizing constant.
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> Hence.smce _?._.i —5=—(a+3—3)—1, we see the
posterior for o“ is inverse gamma:
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A Model for Normal Data (mean and variance both

unknown)

» Note that ( 2| )
2 oy m(p,ofx
7T(H’|O- ,X) - 7T(O'2|X)
» After lots of cancellation,
7(1]0?, %) x 02 exp{— 5L [(n + so)pi® — 2(n% + G0
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» Clearly 7(u|o?,x) is normal:
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A Model for Normal Data (mean and variance both

unknown)

» Note as sg — 0, ,u|0'2ax“"N()_<a 0772)

» Note also the posterior mean is
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» The relative sizes of n and sy determine the weighting of the
sample mean X and the prior mean §.




Example 1. Midge Data

» Example 1: Xj,..., Xg are a random sample of midge wing
lengths (in mm). Assume the X's s N(u,o?).

» Example 1(a): If we know o2 = 0.01, make inference about .

» Example 1(a): Make inference about ; and o2, both
unknown.



