A Conjugate analysis with Normal Data (variance known)

 \blacktriangleright Hence the posterior for μ is simply a normal distribution with mean

$$\frac{\frac{\delta}{\tau^2} + \frac{n\bar{x}}{\sigma^2}}{\frac{1}{\tau^2} + \frac{n}{\sigma^2}}$$

and variance

$$\left(\frac{1}{\tau^2} + \frac{n}{\sigma^2}\right)^{-1} = \frac{\tau^2 \sigma^2}{\sigma^2 + n\tau^2}$$

- ▶ The **precision** is the reciprocal of the **variance**.
- ▶ Here, $\frac{1}{\tau^2}$ is the **prior precision** . . .
- $ightharpoonup \frac{n}{\sigma^2}$ is the data precision ...
- ▶ ... and $\frac{1}{\tau^2} + \frac{n}{\sigma^2}$ is the **posterior precision**.

A Conjugate analysis with Normal Data (variance known)

▶ Note the posterior mean $E[\mu|\mathbf{x}]$ is simply

$$\frac{1/\tau^2}{1/\tau^2 + n/\sigma^2} \delta + \frac{n/\sigma^2}{1/\tau^2 + n/\sigma^2} \bar{X},$$

a combination of the prior mean and the sample mean.

- ▶ If the prior is highly precise, the weight is large on δ .
- ▶ If the data are highly precise (e.g., when n is large), the weight is large on \bar{x} .
- ▶ Clearly as $n \to \infty$, $E[\mu|\mathbf{x}] \approx \bar{\mathbf{x}}$, and $var[\mu|\mathbf{x}] \approx \frac{\sigma^2}{n}$ if we choose a large prior variance τ^2 .
- ▶ This implies that for τ^2 large and n large, Bayesian and frequentist inference about μ will be nearly identical.

A Conjugate analysis with Normal Data (mean known)

- Now suppose X_1, \ldots, X_n are iid $N(\mu, \sigma^2)$ with μ known and σ^2 unknown.
- We will make inference about σ^2 .
- Our likelihood

$$L(\sigma^2|\mathbf{x}) \propto (\sigma^2)^{-\frac{n}{2}} e^{-\frac{n}{2\sigma^2} [\frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2]}$$

- ▶ Let *W* denote the sufficient statistic $\frac{1}{n}\sum (X_i \mu)^2$.
- ▶ The conjugate prior for σ^2 is the **inverse gamma** distribution.
- ▶ If a r.v. $Y \sim$ gamma, then $1/Y \sim$ inverse gamma (IG).
- ▶ The prior for σ^2 is

$$p(\sigma^2) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} (\sigma^2)^{-(\alpha+1)} e^{-(\beta/\sigma^2)} \text{ for } \sigma^2 > 0$$

where $\alpha > 0, \beta > 0$.

A Conjugate analysis with Normal Data (mean known)

Note the prior mean and variance are

$$E(\sigma^2)=rac{eta}{lpha-1}$$
 provided that $lpha>1$
$$var(\sigma^2)=rac{eta^2}{(lpha-1)^2(lpha-2)} ext{ provided that } lpha>2$$

▶ So the posterior for σ^2 is:

$$\pi(\sigma^{2}|\mathbf{x}) \propto L(\sigma^{2}|\mathbf{x})p(\sigma^{2})$$

$$\propto (\sigma^{2})^{-\frac{n}{2}}e^{-\frac{n}{2\sigma^{2}}w}(\sigma^{2})^{-(\alpha+1)}e^{-(\beta/\sigma^{2})}$$

$$= (\sigma^{2})^{-(\alpha+\frac{n}{2}+1)}e^{-\frac{\beta+\frac{n}{2}w}{\sigma^{2}}}$$

► Hence the posterior is clearly an $IG(\alpha + \frac{n}{2}, \beta + \frac{n}{2}w)$ distribution, where $w = \frac{1}{n} \sum (x_i - \mu)^2$. Conjugate!

A Conjugate analysis with Normal Data (mean known)

- ▶ How to choose the prior parameters α and β ?
- ► Note

$$\alpha = \frac{[E(\sigma^2)]^2}{var(\sigma^2)} + 2 \text{ and } \beta = E(\sigma^2) \left\{ \frac{[E(\sigma^2)]^2}{var(\sigma^2)} + 1 \right\}$$

so we could make guesses about $E(\sigma^2)$ and $var(\sigma^2)$ and use these to determine α and β .

▶ When $X_1, ..., X_n$ are iid $N(\mu, \sigma^2)$ with both μ , σ^2 unknown, the conjugate prior for the mean explicitly depends on the variance:

$$p(\sigma^2) \propto (\sigma^2)^{-(\alpha+1)} e^{-\beta/\sigma^2}
onumber \ p(\mu|\sigma^2) \propto (\sigma^2)^{-rac{1}{2}} e^{-rac{1}{2\sigma^2/s_0}(\mu-\delta)^2}$$

- ▶ The prior parameter s₀ measures the analyst's confidence in the prior specification.
- ▶ When s_0 is large, we strongly believe in our prior.

The joint posterior for (μ, σ^2) is:

$$\begin{split} \pi(\mu, \sigma^{2} | \mathbf{x}) &\propto L(\mu, \sigma^{2} | \mathbf{x}) p(\sigma^{2}) p(\mu | \sigma^{2}) \\ &\propto (\sigma^{2})^{-\alpha - \frac{n}{2} - \frac{3}{2}} e^{-\frac{\beta}{\sigma^{2}} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2} - \frac{1}{2\sigma^{2}/s_{0}} (\mu - \delta)^{2}} \\ &= (\sigma^{2})^{-\alpha - \frac{n}{2} - \frac{3}{2}} e^{-\frac{\beta}{\sigma^{2}} - \frac{1}{2\sigma^{2}} (\sum x_{i}^{2} - 2n\bar{x}\mu + n\mu^{2}) - \frac{1}{2\sigma^{2}/s_{0}} (\mu^{2} - 2\mu\delta + \delta^{2})} \\ &= \left[(\sigma^{2})^{-\alpha - \frac{n}{2} - \frac{1}{2}} e^{-\frac{\beta}{\sigma^{2}} - \frac{1}{2\sigma^{2}} (\sum x_{i}^{2} - n\bar{x}^{2})} \right] \\ &\times \left[(\sigma^{2})^{-1} e^{-\frac{1}{2\sigma^{2}} \{(n + s_{0})\mu^{2} - 2(n\bar{x} + \delta s_{0})\mu + (n\bar{x}^{2} + s_{0}\delta^{2})\}} \right] \end{split}$$

Note the second part is simply a **normal kernel** for μ .

▶ To get the posterior for σ^2 , we integrate out μ :

$$\pi(\sigma^{2}|\mathbf{x}) = \int_{-\infty}^{\infty} p(\mu, \sigma^{2}|\mathbf{x}) \,d\mu$$
$$\propto (\sigma^{2})^{-\alpha - \frac{n}{2} - \frac{1}{2}} e^{-\frac{1}{\sigma^{2}} [\beta + \frac{1}{2} (\sum x_{i}^{2} - n\bar{x}^{2})]}$$

since the second piece (which depends on μ) just integrates to a normalizing constant.

► Hence since $-\alpha - \frac{n}{2} - \frac{1}{2} = -(\alpha + \frac{n}{2} - \frac{1}{2}) - 1$, we see the posterior for σ^2 is inverse gamma:

$$\sigma^2 | \mathbf{x} \sim IG(\alpha + \frac{n}{2} - \frac{1}{2}, \beta + \frac{1}{2} \sum (x_i - \bar{x})^2)$$

Note that

$$\pi(\mu|\sigma^2,\mathbf{x}) = \frac{\pi(\mu,\sigma^2|\mathbf{x})}{\pi(\sigma^2|\mathbf{x})}$$

After lots of cancellation,

$$\begin{split} \pi(\mu|\sigma^2,\mathbf{x}) &\propto \sigma^{-2} \exp\{-\frac{1}{2\sigma^2}[(n+s_0)\mu^2 - 2(n\bar{x}+\delta s_0)\mu \\ &+ (n\bar{x}^2 + s_0\delta^2)]\} \\ &= \sigma^{-2} \exp\left\{-\frac{1}{2\sigma^2/(n+s_0)}\left[\mu^2 - 2\frac{n\bar{x}+\delta s_0}{n+s_0}\mu + \frac{n\bar{x}^2 + s_0\delta^2}{n+s_0}\right]\right\} \end{split}$$

• Clearly $\pi(\mu|\sigma^2, \mathbf{x})$ is **normal**:

$$\mu | \sigma^2, \mathbf{x} \sim N\left(\frac{n\overline{x} + \delta s_0}{n + s_0}, \frac{\sigma^2}{n + s_0}\right)$$

- Note as $s_0 \to 0$, $\mu | \sigma^2, \mathbf{x} \dot{\sim} \mathcal{N}(\bar{\mathbf{x}}, \frac{\sigma^2}{n})$.
- ▶ Note also the posterior mean is

$$\left(\frac{n}{n+s_0}\right)\bar{x}+\left(\frac{s_0}{n+s_0}\right)\delta.$$

▶ The relative sizes of n and s_0 determine the weighting of the sample mean \bar{x} and the prior mean δ .

Example 1: Midge Data

- ▶ **Example 1**: $X_1, ..., X_9$ are a random sample of midge wing lengths (in mm). Assume the $X_i's \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$.
- **Example 1(a)**: If we know $\sigma^2 = 0.01$, make inference about μ .

► Example 1(a): Make inference about μ and σ^2 , both unknown.