
Example 1: Midge Data

I Example 1: X1, . . . ,X9 are a random sample of midge wing

lengths (in mm). Assume the X ′
i s

iid∼ N(µ, σ2).

I Example 1(a): If we know σ2 = 0.01, make inference about µ.

I Example 1(b): Make inference about µ and σ2, both
unknown.



Bayesian Model for Multivariate Data

I Suppose each individual has q variables observed on it, so that
X1, . . . ,Xn are q-dimensional random vectors.

I Assume the random vectors are iid multivariate normal, with
mean vector µ and variance-covariance matrix Σ.

I Then a set of conjugate priors for µ and Σ are:

µ|Σ ∼ Nq

(
δ,

1

n0
Σ

)
, Σ−1 ∼ Wishart

I The Wishart distribution is a multivariate generalization of the
gamma.

I n0 is a tuning parameter that reflects confidence in the prior.

I If
n0

n
is larger, the analyst has more confidence in the prior.

I The posterior distributions are:

µ|Σ, x ∼ Nq

(
n0δ + nx̄

n0 + n
,

1

n0 + n
Σ

)
, Σ−1|x ∼ another Wishart



Vague Priors with Normal Data

I The conjugate priors we have discussed include a certain
amount of subjective prior information.

I Another (more objective) approach is to use a
noninformative or vague prior.

I Consider X1, . . . ,Xn
iid∼ N(µ, σ2), with µ, σ2 unknown.

I We can use the vague priors for µ and σ

p(µ) = 1, −∞ < µ <∞ (independent

p(σ) = 1/σ, 0 < σ <∞ priors here)

I Clearly these priors are improper – they integrate to ∞ and
thus are not true densities.

I This is OK, as long as the resulting posteriors are proper
densities.



Vague Priors with Normal Data

I The joint posterior for µ and σ is:

π(µ, σ|x) ∝ L(µ, σ|x)p(µ)p(σ)

Note

L(µ, σ|x) = (2πσ2)−
n
2 e

− 1
2σ2

nP
i=1

(xi−µ)2

= (2πσ2)−
n
2 e−

1
2σ2

P
[(xi−x̄)−(µ−x̄)]2

= (2πσ2)−
n
2 e−

1
2σ2 {

P
(xi−x̄)2−2

P
(xiµ−xi x̄−x̄µ+x̄2)+n(x̄−µ)2}

∝ σ−ne−
1

2σ2 [(n−1)s2+n(x̄−µ)2]

So

π(µ, σ|x) ∝ L(µ, σ|x)(1)

(
1

σ

)
∝ σ−(n+1)e−

1
2σ2 [(n−1)s2+n(µ−x̄)2]



Vague Priors with Normal Data

I To get the marginal posterior for µ, integrate out σ using the
formula ∫ ∞

0
x−(b+1)e−

a
x2 dx = 1

2a−
b
2 Γ

(
b

2

)
I Let x2 = σ2, b = n, a = 1

2 [(n − 1)s2 + n(µ− x̄)2].
Then

π(µ|x) =

∫ ∞

0
π(µ, σ|x) dσ

∝ 1
2

{
1
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}−n
2
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)
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2 )

[
n/s2

(n − 1)π
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Vague Priors with Normal Data

I Making the transformation t =
µ− x̄
s/
√

n
with Jacobian J =

s√
n
:

π(t|x) =
Γ(n−1+1

2 )

Γ(n−1
2 )

1

[(n − 1)π]1/2

[
1 + t2

n−1

]n−1+1
2

I This is clearly a t-distribution with n − 1 degrees of freedom.



Vague Priors with Normal Data

I To get the marginal distribution of σ2, note

π(σ|x) =

∫ ∞

−∞
π(µ, σ|x) dµ

∝ σ−(n+1)e−
1

2σ2 (n−1)s2
∫ ∞

−∞
e−

1
2σ2 n(µ−x̄)2 dµ

= σ−(n+1)e−
1

2σ2 (n−1)s2

[√
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]
I Including the term from the Jacobian of the transformation

from σ to σ2,

π(σ2|x) ∝ (σ2)−(
n+1
2 )e−

(n−1)s2

2σ2 (σ)| 1
2σ |

∝ (σ2)−(
n−1
2 +1)e−

(n−1)s2

2 /σ2

⇒ σ2|x ∼ IG
(

n−1
2 , (n−1)s2

2

)



Vague Priors with Normal Data

I Both of the posteriors (for µ and for σ2) are proper.

I Compared to the posteriors in the conjugate analyses, they are
more diffuse (spread).

I This is because we had vague prior information.

I For a large sample size, there is little difference between the
conjugate analysis and the “noninformative” analysis.

I Example 1(a): Midge data revisited:


