- If we have good prior knowledge that can help us specify priors for β and σ^2 , we can use conjugate priors.
- ▶ Following the procedure in Christensen, Johnson, Branscum, and Hanson (2010), we will actually specify a prior for the error **precision** parameter $\tau = \frac{1}{\sigma^2}$:

$$au \sim \mathsf{gamma}(a,b)$$

- ▶ This is analogous to placing an **inverse gamma** prior on σ^2 .
- ▶ Then our prior on β will depend on τ :

$$oldsymbol{eta} | au \sim extit{MVN} \Big(oldsymbol{\delta}, au^{-1} [\mathbf{ ilde{X}}^{-1} \mathbf{D} (\mathbf{ ilde{X}}^{-1})'] \Big)$$

(Note
$$\tau^{-1} = \sigma^2$$
)

- We will specify a set of k a priori **reasonable** hypothetical observations having predictor vectors $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_k$ (these along with a column of 1's will form the rows of $\tilde{\mathbf{X}}$) and prior expected response values $\tilde{\mathbf{y}}_1, \dots, \tilde{\mathbf{y}}_k$.
- ▶ Our MVN prior on β is equivalent to a MVN prior on $\tilde{\mathbf{X}}\beta$:

$$\mathbf{\tilde{X}}\boldsymbol{\beta}| au \sim \mathit{MVN}(\mathbf{\tilde{y}}, au^{-1}\mathbf{D})$$

- ▶ Hence prior mean of $\tilde{\mathbf{X}}\beta$ is $\tilde{\mathbf{y}}$, implying that the prior mean δ of β is $\tilde{\mathbf{X}}^{-1}\tilde{\mathbf{y}}$.
- ▶ **D**⁻¹ is a diagonal matrix whose diagonal elements represent the weights of the "hypothetical" observations.
- ► Intuitively, the prior has the same "worth" as tr(D⁻¹) observations.

► The joint density is

$$\begin{split} \pi(\boldsymbol{\beta}, \tau, \mathbf{X}, \mathbf{y}) &\propto \tau^{n/2} \tau^{n/2} |\mathbf{D}|^{-1/2} \tau^{a-1} e^{-b\tau} \\ &\times \exp \left\{ -\frac{1}{2} (\mathbf{X}\boldsymbol{\beta} - \mathbf{y})^{'} (\tau^{-1} \mathbf{I})^{-1} (\mathbf{X}\boldsymbol{\beta} - \mathbf{y}) \right\} \\ &\times \exp \left\{ -\frac{1}{2} (\tilde{\mathbf{X}}\boldsymbol{\beta} - \tilde{\mathbf{y}})^{'} (\tau^{-1} \mathbf{D})^{-1} (\tilde{\mathbf{X}}\boldsymbol{\beta} - \tilde{\mathbf{y}}) \right\} \end{split}$$

▶ It can be shown that the posterior for $\boldsymbol{\beta}|\tau$ is:

$$oldsymbol{eta}| au, \mathbf{X}, \mathbf{y} \sim \mathit{MVN}ig(oldsymbol{\hat{eta}}, au^{-1}(\mathbf{X}^{'}\mathbf{X} + \mathbf{ ilde{X}}^{'}\mathbf{D}^{-1}\mathbf{ ilde{X}})^{-1}ig)$$

where

$$\boldsymbol{\hat{\beta}} = (\mathbf{X}^{'}\mathbf{X} + \mathbf{\tilde{X}}^{'}\mathbf{D}^{-1}\mathbf{\tilde{X}})^{-1}[\mathbf{X}^{'}\mathbf{y} + \mathbf{\tilde{X}}^{'}\mathbf{D}^{-1}\mathbf{\tilde{y}}]$$

▶ And the posterior for τ is:

$$au | \mathbf{X}, \mathbf{y} \sim \operatorname{gamma}\left(\frac{n+2a}{2}, \frac{n+2a}{2}s^*\right)$$

where

$$s^* = \frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + (\tilde{\mathbf{y}} - \tilde{\mathbf{X}}\hat{\boldsymbol{\beta}})'\mathbf{D}^{-1}(\tilde{\mathbf{y}} - \tilde{\mathbf{X}}\hat{\boldsymbol{\beta}}) + 2b}{n + 2a}$$

The subjective information is incorporated via $\hat{\beta}$ (a function of $\tilde{\mathbf{X}}$ and $\tilde{\mathbf{y}}$) and s^* (a function of $\hat{\beta}$, a, and b).

Prior Specification for the Conjugate Analysis

- ightharpoonup We will specify a matrix $\tilde{\mathbf{X}}$ of hypothetical predictor values.
- ▶ We also specify (via expert opinion or previous knowledge) a corresponding vector $\tilde{\mathbf{y}}$ of reasonable response values for such predictors.
- ► The number of such "hypothetical observations" we specify must be one more than the number of predictor variables in the regression.
- Our prior mean for β will be $\tilde{\mathbf{X}}^{-1}\tilde{\mathbf{y}}$.

Prior Specification for the Conjugate Analysis

- ▶ We also must specify the shape parameter a and the rate parameter b for the gamma prior on τ .
- ▶ One strategy is to choose *a* first, based on the degree on confidence in our prior.
- ► For a given a, we can view the prior as being "worth" the same as 2a sample observations.
- A larger value of a indicates we are more confident in our prior.

Prior Specification for the Conjugate Analysis

- ▶ Here is one strategy for specifying *b*:
- Consider any of the "hypothetical observations" take the first, for example.
- ▶ If $\tilde{\mathbf{y}}_1$ is the prior expected response for a hypothetical observation with predictors $\tilde{\mathbf{x}}_1$, then let $\tilde{\mathbf{y}}_{max}$ be the *a priori* maximum reasonable response for a hypothetical observation with predictors $\tilde{\mathbf{x}}_1$.
- ▶ Then (based on the normal distribution) let a prior guess for σ be $\frac{\tilde{\mathbf{y}}_{\text{max}} \tilde{\mathbf{y}}_1}{1.645}$.
- ▶ Since $\tau = \frac{1}{\sigma^2}$, this gives us a reasonable guess for τ .
- Set this guess for τ equal to the mean $\frac{a}{b}$ of the gamma prior for τ .
- ▶ Since we have already specified *a*, we can solve for *b*.

Example of a Conjugate Analysis

- Example in R with Automobile Data Set
- We can get point and interval estimates for τ (and thus for σ^2).

▶ Given the estimate for τ , we can get point and interval estimates for the elements of β .