
STAT 540: Random Numbers and Simulation Hitchcock

Random Numbers and Simulation

• Generating random numbers: Typically impossible/unfeasible to obtain truly

random numbers

• Programs have been developed to generate pseudo-random numbers:

• Values generated from a complicated deterministic algorithm, which can pass any

statistical test for randomness

• They appear to be independent and identically distributed.

• Random number generators for common distributions are built into R.

• For less common distributions, more complicated methods have been developed

(e.g., Accept-Reject Sampling, Metropolis-Hastings Algorithm)

• STAT 740 covers these.

University of South Carolina Page 1



STAT 540: Random Numbers and Simulation Hitchcock

(Monte Carlo) Simulation

Some Common Uses of Simulation

1. Optimization (Example: Finding MLEs)

2. Calculating Definite Integrals (Ex: Finding Posterior Distributions)

3. Approximating the Sampling Distribution of a Statistic (Ex: Constructing CIs)
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Optimization

• 1. Finding the x that maximizes (or minimizes) a complicated function h(x) can be

difficult analytically

• Situation even tougher if x is multidimensional

• Find x to maximize h(x1, x2, . . . , xp)
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OTHER OPTIONS:

• Simple Stochastic Search: If the maximum is to take place over a bounded region,

say [0, 1]p, then:

Generate many uniform random observations in that region, plug each into h(·),

and pick the one that gives the largest h(x).

• Advantage: Easy to program.

• Disadvantage: Very slow, especially for multidimensional problems. Requires much

computation.

Example: Maximize h(x1, x2) = (x2
1 + 4x2

2)e
1−x2

1
−x2

2 over [−3, 3]2.
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More advanced: Gradient Methods, which use derivative information to determine

which area of the region to search next.

• Rule: “go up the slope”

• Disadvantage: Can get stuck on local maxima

Simulated Annealing: Tries a sequence of x values: x0,x1, . . .

• If h(xi+1) ≥ h(xi), “move” to xi+1.

• If h(xi+1) < h(xi), “move” to xi+1 with a certain probability which depends on

h(xi+1)− h(xi).
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R functions that perform optimization

optim()

optimize()← one-dimensional optimization

Example: optim(par = c(0,0), fn=my.fcn,

control=list(fnscale=-1), maxit=100000)

# Nelder-Mead optimization

Other choices: method="CG", method="BFGS", method="SANN"
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Calculating Definite Integrals

In statistics, we often have to calculate difficult definite integrals (Posterior

distributions, expected values)

I =
∫ b

a
h(x) dx

(here, x could be multidimensional)

Example 1: Find: ∫
1

0

4

1 + x2
dx

Example 2: Find: ∫
1

0

∫
1

0
(4− x2

1 − 2x2
2) dx2 dx1
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Hit-or-Miss Method

Example 1:

h(x) =
4

1 + x2

• Determine c such that c ≥ h(x) across entire region of interest. (Here, c = 4)

• Generate n random uniform (Xi, Yi) pairs, Xi’s from U [a, b] (here, U [0, 1]) and

Yi’s from U [0, c] (here, U [0, 4])

• Count the number of times (call this m) that the Yi is less than the h(Xi)

• Then I ≈ c(b− a)m
n

[ This is (height)(width)(proportion in shaded region) ]
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Classical Monte Carlo Integration

I =
∫ b

a
h(x) dx

• Take n random uniform values U1, . . . , Un (could be vectors) over [a, b]

Then

I ≈ b− a

n

n∑
i=1

h(Ui)
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Expected Value of a Function of a Random Variable

Suppose X is a random variable with density f .

Find E[h(X)] for some function h, e.g.,

E[X2]

E[
√

X]

E[sin(X)]

• Note E[h(X)] =
∫
X h(x)f(x) dx over whatever the support of f is.

• Take n random values X1, . . . , Xn from the distribution of X (i.e., with density f )

• Then

E[h(X)] ≈ 1

n

n∑
i=1

h(Xi)
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Examples

Example 3: If X is a random variable with a N(10, 1) distribution, find E(X2).

Example 4: If Y is a beta random variable with parameters a = 5 and b = 1, find

E(− loge Y ).

• Some more advanced methods of integration using simulation (Importance

Sampling)

• Note: R function integrate() does numerical integration for functions of a

single variable (not using simulation techniques)

• adapt() in the “adapt” package does multivariate numerical integration
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Approximating the Sampling Distribution of a Statistic

To perform inference based on sample statistics, we typically need to know the sam-

pling distribution of the statistics.

Example: X1, . . . , Xn ∼ iid N(µ, σ2).

T =
X̄ − µ

s/
√

n

has a t(n− 1) distribution.

If σ2 known,

Z =
X̄ − µ

σ/
√

n

has a N(0, 1) distribution.

Then we can use these sampling distributions for inference (CIs, hypothesis tests).

University of South Carolina Page 12



STAT 540: Random Numbers and Simulation Hitchcock

What if the data’s distribution is not normal?

1. Large sample: Central Limit Theorem

2. Small sample: Nonparametric procedures based on permutation distribution
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• If population distribution is known, can approximate sampling distribution with

simulation.

• Repeatedly (m times) generate random sample of size n from population

distribution.

• Calculate statistic (say, S) each time.

• The empirical distribution of S-values approximates its true distribution.
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Example 1: X1, . . . , X4 ∼ Expon(1)

• What is the sampling distribution of X̄?

• What is the sampling distribution of sample midrange?
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• What if we don’t know the exact population distribution (more likely)?

• Can use bootstrap methods: Resample (randomly select n values from the original

sample, with replacement). These “bootstrap samples” together mimic the popula-

tion.

• For each of the, say, m bootstrap samples, calculate the statistic of interest.

• These m values will approximate the sampling distribution.

Example 2: Observe 7, 9, 13, 12, 4, 6, 8, 10, 10, 7 from an unknown population type.
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• Bootstrap sampling built into R in the “boot” package.

Try library(boot); help(boot) for details.

• If you know the form of the population distribution, but not the parameters, a

parametric bootstrap can be used.

• Simple bootstrap CIs have some drawbacks

• More complicated “bias-corrected” bootstrap methods have been developed
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