
Chapter 18:

Modifying SAS Data

Sets and Tracking

Changes

1

STAT 541

©Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University of South Carolina

2

Modifying Data without Replacing

the Data Set

◼ This can be done using the MODIFY statement

in a DATA step.

◼ Using the MODIFY statement allows

replacement, deletion, or appending

observations in an existing data set without

creating an additional copy of the data.

3

Modifying Data without Replacing

the Data Set (continued)

◼ The process involves:

1. Using the MODIFY statement to update all observations in a

data set

2. Using a transaction data set to make modifications to a data

set

3. Using an index to locate observations to modify in a data set

◼ When modifying data, safeguarding data and tracking the

changes can be a concern.

1. Placing integrity constraints on variables in a data set

2. Initiating and managing audit trail file

3. Creating and processing generation data sets

4

Using the MODIFY Statement

◼ When a DATA step creates a data set named in

a MERGE, UPDATE, or SET statement, SAS

creates a second copy of the input data set.

Once execution is complete, the original data

set is deleted and is replaced by the new data

set. The set of variables can change in this

case.

◼ When using a MODIFY statement, SAS DOES

NOT create a second copy but updates the

original data set. No variables can be added or

deleted. The set of variables does not change.

5

Using the MODIFY Statement

(continued)

◼ There is an implied REPLACE statement at the

bottom of the DATA step instead of an OUTPUT

statement.

◼ The MODIFY statement can update:

1. Every observation in a data set

2. Observations using a transaction data set and

a BY statement

3. Observations located using an index

6

Using the MODIFY Statement

(continued)

◼ Data can be lost if the DATA step using a

MODIFY statement abnormally terminates. This

can damage the master data set.

◼ Failure recovery includes:

1. Restoring the master file from a backup and

restarting the step, or

2. Keeping an audit trail file and using it to

determine which master observations have

been updated

7

Modifying All Observations in a SAS

Data Set

◼ Use an assignment statement to the existing

variable by specifying the modification through

the expression.

DATA SAS-data-set;

MODIFY SAS-data-set;

existing-variable = expression;

run;

8

Modifying All Observations in a SAS

Data Set (continued)

data transactions;

modify transactions;

expenses=int(1.07*expenses);

income=int(income/2);

run;

The INT function returns the integer portion of the

result.

9

Modifying Observations Using a

Transaction Data Set

◼ A master data set can be modified with the

values of a transaction data set by using the

MODIFY statement with a BY statement to

apply updates by matching observations.

DATA SAS-data-set;

MODIFY SAS-data-set transaction-data-set;

BY key-variable;

run;

10

Modifying Observations Using a

Transaction Data Set (continued)

◼ The master data set must be followed by the

transaction data set.

◼ Dynamic WHERE processing is used when

determining BY statement matches. Neither

data set needs to be sorted according to the

variable in the BY statement.

◼ Having the master data set sorted or indexed

and the transaction data sorted requires fewer

resources.

11

Modifying Observations Using a

Transaction Data Set (continued)

data transactions;

modify transactions newactions;

by customerID;

run;

12

Handling Duplicate Values When

Using MODIFY and BY

Statements

◼ WHERE processing starts at the top of the master data

set and finds the first match and updates it.

◼ If duplicate values of the BY variable are in the master

data set, only the first observation in the group of

duplicate values is updated because WHERE

processing begins at the top of the data set and updates

the first match.

◼ If duplicate values of the BY variable are in the

transaction data set, the duplicate values overwrite each

other so that the last value in the group of duplicate

transactions is the result in the master data set.

13

Handling Duplicate Values When

Using MODIFY and BY

Statements

(continued)

◼ Avoid overwriting duplicate values by writing an

accumulation statement so that all observations in the

transaction data set are added to the master

observations.

◼ If duplicate values exist in both the master and

transaction data sets, you can use PROC SQL to apply

the duplicate values in the transaction data set to the

duplicate values in the master data set in a one-to-one

correspondence.

14

Handling Missing Values in the

Transaction Data Set
◼ If there are missing values in the transaction data set, SAS does not

replace the data in the master data set with missing values unless

they are special missing values.

◼ Use the UPDATEMODE= option in the MODIFY statement to specify

how missing values in the transaction data set are handled.

SYNTAX

MODIFY master-data-set transaction-data-set

UPDATEMODE=MISSINGCHECK | NOMISSINGCHECK

MISSINGCHECK (default) prevents missing values in the transaction

data set from replacing values in the master data set unless they are

special missing values, while NOMISSINGCHECK allows it but special

missing values still replace the values in the master data set.

15

Modifying Observations Located by

an Index
◼ You can use a BY statement to access values you want to

update in a master data set by matching. When you have

an indexed data set, you can use the index to directly

access the values you want to update. The steps are:

1. Use a MODIFY statement with the KEY= option to name

an indexed variable to locate the observations for

updating.

2. Use another data source (typically a SAS data set named

on a SET statement or an external file read by an INPUT

statement) to provide a like-named variable whose values

are supplied to the index.

16

Modifying Observations Located by

an Index (continued)

MODIFY master-data-set KEY=index-name;

Index-name is the name of the simple or composite index that you are using to

locate observations.

The KEY= option requires that:

1. you explicitly specify the update. No automatic overlay of non-missing values

in the transaction data set occurs as it does with the MODIFY/BY method.

2. each observation in the transaction data set must have a matching

observation in the master data set. If there are multiple observations in the

transaction data set per one master observation, only the first observation in

the transaction data set is applied. Other observations generate run time

errors and terminate the DATA step (unless the UNIQUE option is used).

17

Modifying Observations Located by

an Index (continued)
proc datasets;

modify olddata;

index create id / unique;

data olddata;

set newdata

(rename =(oldvalue1=newvalue1

oldvalue2=newvalue2));

modify olddata key=ID;

oldvalue1=newvalue1;

oldvalue2=newvalue2;

run;

ID Oldvalue1 Oldvalue2

1 100 300

2 200 400

ID Oldvalue1 Oldvalue2

1 1001 3003

2 2002 4004

ID Oldvalue1 Oldvalue2

1 1001 3003

2 2002 4004

OldData Before Modification

NewData

OldData After Modification

18

Modifying Observations Located by

an Index: Handling Duplicate

Values
◼ If there are duplicates in the master data set, only the first

occurrence is updated.

◼ Duplicate index values in the transaction data set might

cause problems.

◼ If there are nonconsecutive duplicates in the transaction

data set, the first observation in the master data set is

updated with the last duplicate transaction value.

◼ An error results if there are consecutive duplicates in the

transaction data set where some do not have a match in

the master data set.

19

Modifying Observations Located by

an Index: Handling Duplicate

Values (continued)

MODIFY SAS-data-set KEY=index-name/UNIQUE;

◼ UNIQUE option applies multiple transactions to one

master observation by returning to the top of the index

when looking for a match for values in the transaction data

set.

20

Controlling the Update Process

◼ When a DATA Step contains a MODIFY statement, SAS

will process the data a certain way. If the OUTPUT,

REPLACE, and REMOVE statements are not present,

there is actually an implied REPLACE statement at the

end of the DATA Step. When this happens, SAS writes the

current observation to its original place in the SAS data

set.

◼ To override the default, explicitly use the OUTPUT,

REPLACE, or REMOVE statements.

◼ If any one of these three are used, you must explicitly

program each action that needs to be taken. These three

statements can be used together as long as the sequence

is logical.

21

Controlling the Update Process

(continuation)

◼ OUTPUT; specifies that the current observation be written

to the end of the data set

◼ REPLACE; specifies that the current observation be

rewritten to the same location in the data set

◼ REMOVE; specifies that the current observation be

deleted from the master data set

◼ If the OUTPUT statement is used with the REPLACE or

REMOVE statement, the OUTPUT statement should be

executed after any REPLACE or REMOVE statement to

ensure the integrity of the index position.

22

Controlling the Update Process

(continuation)

data master;

set transaction;

modify master key = id;

a = b;

if code= ’no’ then remove;

else if code= ’yes’ then replace;

else if code= ’new’ then output;

run;

• Delete rows

with REMOVE.

• Update rows

with REPLACE.

• Append rows

with OUTPUT.

23

Controlling the Update Process-

Monitoring I/O Conditions

◼ Using _IORC_ with %SYSRC

– %SYSRC is a macro that allows you to check the value of _IORC_

(created when using MODIFY) for specific Input/Output

conditions/errors

– Some “errors” aren’t really errors, and the value _ERROR_ can be

reset to 0 to allow execution to continue

– Mnemonics

▪ _DSENMR (No match in master data set for observation—used with BY)

▪ _DSEMTR (Multiple unmatched observations in master data set—used with

BY)

▪ _DSENOM (No match in master data set for observation—used with KEY)

▪ _SOK (match found)

24

Integrity Constraints

◼ We studied CHECK, NOT NULL, UNIQUE and PRIMARY

KEY in SQL in Chapter 5

◼ Integrity constraints can also be set up using PROC

DATASETS

proc datasets nolist;

modify lab2012;

ic create check_USC=check(where=(USC in (‘N’

’Y’ ’y’ ’n’))message=“Incorrect code for

USC”);

quit;

◼ Integrity constraints can be removed with IC DELETE

Audit Trails

◼ Audit trails can be used to track changes
to a data set made in

– Viewtable

– MODIFY in the DATA step

– UPDATE, INSERT, DELETE in PROC SQL

◼ Changes are stored in an audit file

◼ SAS commands (CREATE TABLE, PROC
SORT, DATA step) can delete the audit
trail

25

Audit Trail Example

proc datasets nolist;

audit nonprof;

initiate;

quit;

data nonprof;

modify nonprof;

years=year(today())-since;

run;

26

Audit Trail Example

◼ SAS creates the audit file

WORK.nonprof.audit

◼ You can view the audit file with PROC

CONTENTS

proc contents

data=nonprof(type=audit);

run;

27

Audit File Variables

◼ In addition to data set variables, the audit

file contains metadata

– _ATOPCODE_ (Type of operation)

– _ATDATETIME_ (Date and time)

– _ATOBSNO_ (Affected observation #’s)

– _ATUSERID_

28

Audit File Variables

◼ You can use the LOG statement to limit

data that appears in the audit file, typically

by _ATOPCODE_ class

◼ User variables can be added to the audit

file as well

– Once created, they can be updated and then

saved in the audit trail file

◼ The audit trail can be suspended, resumed
and ended

29

Generation Data Sets

◼ Multiple version (generations) of data sets
can be saved each time a data set is
replaced

◼ The generation number is typically small

◼ The naming is a little counterintuitive

30

Generation Data Sets

proc datasets nolist;

modify nonprof (genmax=4);

quit;

data nonprof; set nonprof;

years=year(today())-since;

run;

proc sort data=nonprof;

by memberid; run;
31

Generation Data Sets

◼ The current data set is still nonprof

◼ The data set created by SET is
nonprof#002

◼ The original data set is nonprof#001

32

Generation Data Sets

You can use gennum to refer to particular
data sets:

proc print data=nonprof

(gennum=2); run;

proc print data=nonprof

(gennum=0); run;

proc sgplot

data=nonprof(gennum=-2);

histogram years; run;
33

Generation Data Sets

◼ Generations can be deleted or assigned
new names in PROC DATASETS

◼ HIST (all historical versions) and ALL
keywords can be used with DELETE

34

