
Chapter 4: Combining

Tables Vertically using

PROC SQL

1
© Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University of South Carolina

Outline

▪ Set Operations

▪ Combining Columns

▪ Keywords (CORR and ALL)

▪ Except

▪ Intersect

▪ Union

▪ Outer Union

2

Sample Tables
Google Grego

Name Residence

John Columbia, SC

Laura Cambridge, MA

Melissa Los Angeles, CA

Michael Orlando, FL

Joseph London, England

Melissa Los Angeles, CA

Mark Napierville, IL

John Washington, DC

Bing Grego

Name City

Mark Napierville, IL

Joseph London, England

Michael Orlando, FL

Melissa Los Angeles, CA

VG Yerevan, Armenia

3

Combining Tables Vertically

▪ Standard syntax:

proc sql; select *

from google

(except/intersect/union/outer union)

(corr/all)

select * from bing;

4

Combining Tables Vertically

▪ Multiple SELECT queries processed

separately, then combined using set

operator

▪ Set operators select unique rows by

default

▪ Set operators overlay columns by default

5

Combining Tables Vertically

▪ Sequential columns in each query should

be the same type

▪ For three or more queries, set operators

are evaluated sequentially

▪ Keywords ALL and CORR modify the set

operators

6

EXCEPT

▪ Selects unique rows from first table that do

not occur in the second table

▪ Columns are simply overlaid (even if

names are different)

▪ Columns inherit names from the first table

7

EXCEPT

proc sql;

select * from google

except

select * from bing;

quit;

Name Residence

John Columbia, SC

John Washington, DC

Laura Cambridge, MA

8

EXCEPT

▪ In first sweep, the second occurrence of

Melissa in google would be removed

▪ In second sweep, Mark, Joseph, Michael,

and the first occurrence of Melissa would

be removed

▪ The second column is called Residence

rather than City

▪ Data is sorted

9

EXCEPT

10

EXCEPT ALL

▪ Use the keyword ALL

after EXCEPT so that

duplicate rows in the

first table that do not

occur in the second

table are not

eliminated.

▪ The second Melissa

does not have a

match.

▪ Data is sorted

Name Residence

John Columbia, SC

John Washington, DC

Laura Cambridge, MA

Melissa Los Angeles, CA

11

EXCEPT ALL

▪ We would have different results if either

John from SC, Laura from MA or John

from DC were listed more than once.

▪ Or….if Melissa from CA was not listed in

the second table

12

EXCEPT CORR

▪ The keyword CORR displays only columns

with the same name in both tables

▪ Columns are selected first

▪ Unique rows are then extracted from the

first table that do not appear in the second

table

▪ This ordering may generate sparser output

than expected

13

EXCEPT CORR

proc sql;

select * from google

except corr

select * from bing;

quit;

Name

John

Laura

14

EXCEPT CORR and ALL

▪ If both keywords ALL and CORR are used

with EXCEPT

– Unique and duplicate rows from the first table

will be saved, unless they have matches in

the second table

– Only columns with the same name in both

tables will be displayed

15

EXCEPT CORR and ALL

▪ All occurrences of

John are retained

▪ The unmatched

duplicate occurrence

of Melissa is retained

▪ The unmatched

occurrence of Laura

is retained

▪ Data is sorted

16

Name

John

John

Laura

Melissa

INTERSECT

▪ Selects unique rows

common to both

tables

▪ Column labels are

ignored

proc sql;

select * from google

intersect

select * from bing;

quit;

17

INTERSECT

18

INTERSECT

▪ Melissa only appears

once

▪ The second column is

labeled based on the

first data set

▪ Data is sorted

Name Residence

Joseph London England

Mark Napierville, IL

Melissa Los Angeles, CA

Michael Orlando, FL

19

INTERSECT ALL

▪ Selects unique and duplicate rows common

to both tables

▪ Column labels are ignored

▪ Data is sorted

20

INTERSECT ALL

proc sql;

select * from google

intersect all

select * from bing;

quit;

Name Residence

Joseph London England

Mark Napierville, IL

Melissa Los Angeles, CA

Michael Orlando, FL

21

INTERSECT CORR

▪ Selects unique rows

common to both

tables for matching

column names

proc sql;

select * from google

intersect corr

select * from bing;

quit;

Name

Joseph

Mark

Melissa

Michael

22

INTERSECT CORR and ALL

proc sql;

select * from google

intersect all corr

select * from bing;

run;
▪ Unique and duplicate rows that

appear in both tables will be

saved

▪ Only columns with the same

name in both tables will be

displayed

23

Name

Joseph

Mark

Melissa

Michael

UNION

▪ Selects unique rows

in either table

▪ Column labels are

ignored

▪ Rows are sorted

proc sql;

select * from google

union

select * from bing;

quit;

24

UNION

25

© Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University of

South Carolina

UNION

26

Name Residence

John Columbia, SC

John Washington, DC

Joseph London, England

Laura Cambridge, MA

Mark Napierville, IL

Melissa Los Angeles, CA

Michael Orlando, FL

VG Armenia

UNION and ALL

▪ Selects all rows in

either table

▪ Column labels are

ignored

▪ Not sorted

proc sql;

select * from google

union all

select * from bing;

quit;

27

UNION and CORR

▪ Selects all unique

rows in either table

based on matching

column names

proc sql;

select * from google

union corr

select * from bing;

run;

28

UNION and CORR

29

Name

John

Joseph

Laura

Mark

Melissa

Michael

VG

UNION CORR and ALL

▪ Unique and duplicate

rows that appear in

either table will be

saved

▪ Only columns with the

same name in both

tables will be

displayed

▪ Output is unsorted

proc sql;

select * from google

union all corr

select * from bing;

quit;

30

OUTER UNION

▪ Selects all rows in

both tables, but does

not overlay any of the

information

▪ Output will have r1+r2

rows and c1+c2

columns

proc sql;

select * from google

outer union

select * from bing;

quit;

31

OUTER UNION and CORR

▪ Using CORR overlays

columns with the

same name

▪ More useful than

OUTER UNION, but

still does not merge

data

proc sql;

select * from google

outer union corr

select * from bing;

quit;

32

OUTER UNION with CORR

33

Name Residence City

John Columbia, SC

Laura Cambridge, MA

Melissa Los Angeles, CA

Michael Orlando, FL

Joseph London, England

Melissa Los Angeles, CA

Mark Napierville, IL

John Washington, DC

Mark Napierville, IL

Joseph London, England

Melissa Orlando, FL

Michael Los Angeles, CA

VG Yerevan, Armenia

