13.11. The uniform distribution is shown in Figure 13.12 (Moore and Notz, pp 310). This is a population density curve, but it is constant. The height is 0.2 and the length is 5 .
(a) The total area under the curve is

$$
5 \times 0.2=1
$$

We remember from geometry that the area of a rectangle is the base (5) times the height (0.2). (b) The mean is the balance point. This curve would balance at 2.5 , exactly in the middle. The median is the equal-areas point, splitting the area under the curve into equal 50% regions. The median is also 2.5 . We know the mean and median are equal because the population density curve is symmetric.
(c) 20%. This is the area under the curve over that region:

$$
1 \times 0.2=0.2 .
$$

The area is 0.2 as a proportion. As a percentage, this is 20%.
(d) 30%. This is the area under the curve over that region:

$$
1.5 \times 0.2=0.3
$$

The area is 0.3 as a proportion. As a percentage, this is 30%.
13.15. Here is the population density curve for the length of human pregnancies:

This is a normal distribution with mean $\mu=266$ days and standard deviation $\sigma=16$ days. In the graph above, tick marks are shown ± 1 standard deviation, ± 2 standard deviations, and ± 3 standard deviations from the mean.
(a) From the 68-95-99.7 Rule, we know that 99.7% of the pregnancy lengths will be within 3 standard deviations of the mean. We calculate:

$$
\mu+3 \sigma=266+3(16)=314
$$

and

$$
\mu-3 \sigma=266-3(16)=218
$$

Therefore, 99.7% of human pregnancy lengths will be between 218 and 314 days.
(b) From the 68-95-99.7 Rule, we know that 95% of the pregnancy lengths will be within 2 standard deviations of the mean. We calculate:

$$
\mu+2 \sigma=266+2(16)=298
$$

and

$$
\mu-2 \sigma=266-2(16)=234 .
$$

Therefore, 95% of human pregnancy lengths will be between 234 and 298 days. This means

- 2.5% of the human pregnancy lengths will be more than 298 days.
- 2.5% of the human pregnancy lengths will be less than 234 days.

Therefore, the longest 2.5% of all pregnancies will be more than 298 days.
(c) From the 68-95-99.7 Rule, we know that 68% of the pregnancy lengths will be within 1 standard deviation of the mean. We calculate:

$$
\mu+\sigma=266+16=282
$$

and

$$
\mu-\sigma=266-16=250
$$

Therefore, 68% of human pregnancy lengths will be between 250 and 282 days. This means

- 16% of the human pregnancy lengths will be more than 282 days.
- 16% of the human pregnancy lengths will be less than 250 days.

Therefore, the shortest 16% of all pregnancies will be less than 250 days.
Note: I used the R code below to make the normal distribution on the last page:

```
x = seq(208,324,0.1)
pdf = dnorm(x,266,16)
plot(x,pdf,type="l",xlab="Length of human pregnancies (in days)",ylab="",
    xaxp=c(218,314,6))
abline(h=0)
```

13.24. Here is the population density curve for the number of hours of sleep per school night:

This is a normal distribution with mean $\mu=6.6$ hours and standard deviation $\sigma=1.3$ hours. In the graph above, tick marks are shown ± 1 standard deviation, ± 2 standard deviations, and ± 3 standard deviations from the mean.
(a) From the $68-95-99.7$ Rule, we know that 68% of the students will be within 1 standard deviation of the mean. We calculate:

$$
\mu+\sigma=6.6+1.3=7.9
$$

and

$$
\mu-\sigma=6.6-1.3=5.3
$$

Therefore, 68% of the students will sleep between 5.3 and 7.9 hours. This means

- 16% of the students will sleep less than 5.3 hours.
- 16% of the students will sleep more than 7.9 hours.

Therefore, 16% of the students will sleep more than 7.9 hours.
From the 68-95-99.7 Rule, we know that 95% of the students will be within 2 standard deviations of the mean. We calculate:

$$
\mu+2 \sigma=6.6+2(1.3)=9.2
$$

and

$$
\mu-2 \sigma=6.6-2(1.3)=4.0
$$

Therefore, 95% of the students will sleep between 4.0 and 9.2 hours. This means

- 2.5% of the students will sleep less than 4.0 hours.
- 2.5% of the students will sleep more than 9.2 hours.

Therefore, 2.5% of the students will sleep less than 4.0 hours.
(b) 68% of the students will sleep between 5.3 and 7.9 hours. We calculated this above.
13.26. Here is the population density curve for SAT scores for college-bound seniors in 2018:

This is a normal distribution with mean $\mu=1068$ and standard deviation $\sigma=204$. In the graph above, tick marks are shown ± 1 standard deviation, ± 2 standard deviations, and ± 3 standard deviations from the mean. A solid circle at 820 is shown.

We want to find the area to the left of 820 -this area corresponds to the percentage of college-bound seniors in the population who scored less than 820 .

1. Calculate the standard score:

$$
z=\frac{\text { observation }- \text { mean }}{\text { standard deviation }}=\frac{820-1068}{204} \approx-1.2 .
$$

2. Look $z=-1.2$ up on Table B and read off the percentage:

$$
z=-1.2 \Longrightarrow \text { Percentage }=11.51 \%
$$

Therefore, 11.51% of all college-bound seniors scored less than 820 on the SAT in 2018. See the graph on the next page.

Implementation in R :
> pnorm(-1.2)
[1] 0.1151
13.32. The population density curve for the S\&P500 annual returns (in percentages) since 1945 is shown on the top of the next page (left). This is a normal distribution with mean $\mu=12.5 \%$ and standard deviation $\sigma=17.8 \%$. In the graph above, tick marks are shown ± 1 standard deviation, ± 2 standard deviations, and ± 3 standard deviations from the mean.
(a) From the 68-95-99.7 Rule, we know that 95% of the annual returns are within 2 standard deviations of the mean. We calculate:

$$
\mu+2 \sigma=12.5+2(17.8)=48.1
$$

and

$$
\mu-2 \sigma=12.5-2(17.8)=-23.1
$$

Therefore, 95% of the S\&P500 annual returns will be between -23.1% and 48.1%.
(b) We want to find the area to the left of 0%-this area corresponds to the percentage of years the S\&P500 annual return will be negative (i.e., less than 0%).

1. Calculate the standard score:

$$
z=\frac{\text { observation }- \text { mean }}{\text { standard deviation }}=\frac{0-12.5}{17.8} \approx-0.7 .
$$

2. Look $z=-0.7$ up on Table B and read off the percentage:

$$
z=-0.7 \Longrightarrow \text { Percentage }=24.20 \%
$$

Therefore, 24.20% of annual returns will be negative (i.e., 24.20% of the years will be "down years" where the market is down). See the graph on the next page (right).

Implementation in R:

```
> pnorm(-0.7)
```

[1] 0.2420
(c) We want to find the area to the right of 25%-this area corresponds to the percentage of years the S\&P500 annual return will be 25% or more.

1. Calculate the standard score:

$$
z=\frac{\text { observation }- \text { mean }}{\text { standard deviation }}=\frac{25-12.5}{17.8} \approx 0.7 .
$$

2. Look $z=0.7$ up on Table B and read off the percentage:

$$
z=0.7 \Longrightarrow \text { Percentage }=75.80 \% \text {. }
$$

- This is the percentage of years the S\&P500 annual return will be less than 25% (see next page, left).
- Therefore, the percentage of years the S\&P500 annual return will be more than 25% is

$$
100 \%-75.80 \%=24.20 \%
$$

In R (which reports decimals; not percentages),
> 1-pnorm(0.7)
[1] 0.2420

13.33. Table B shows the standard normal distribution; i.e., a normal distribution with mean 0 and standard deviation 1. From Table B,

$$
\begin{aligned}
& z=-0.7 \quad \Longrightarrow \quad \text { Percentage }=24.20 \% \\
& z=-0.6 \quad \Longrightarrow \quad \text { Percentage }=27.42 \%
\end{aligned}
$$

Therefore, the 25 th percentile $\left(Q_{1}\right)$ is somewhere between $z=-0.7$ and $z=0.6$ on the standard normal distribution. This means the first quartile Q_{1} is approximately -0.6 to -0.7 standard deviations below the mean.

Because the standard normal distribution is symmetric, this means the 75 th percentile $\left(Q_{3}\right)$ is somewhere between $z=0.6$ and $z=0.7$. This means the third quartile Q_{3} is approximately 0.6 to 0.7 standard deviations above the mean.

The graph above (right) shows the standard normal distribution with the quartiles identified.

