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Abstract

This paper presents a comparative study of the predictive performances of neural network time series models for forecasting
failures and reliability in engine systems. Traditionally, failure data analysis requires specifications of parametric failure
distributions and justifications of certain assumptions, which are at times difficult to validate. On the other hand, the time
series modeling technique using neural networks provides a promising alternative. Neural network modeling via feed-forward
multilayer perceptron (MLP) suffers from local minima problems and long computation time. The radial basis function (RBF)
neural network architecture is found to be a viable alternative due to its shorter training time. Illustrative examples using
reliability testing and field data showed that the proposed model results in comparable or better predictive performance than
traditional MLP model and the linear benchmark based on Box–Jenkins autoregressive-integrated-moving average (ARIMA)
models. The effects of input window size and hidden layer nodes are further investigated. Appropriate design topologies can
be determined via sensitivity analysis.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Reliability modeling and prediction plays a very
important role for assessing the performance of en-
gineering systems. Techniques based on lifetime dis-
tribution models, parts count and parts stress, fault
tree analysis and Markov models have been devel-
oped to forecast reliability. Although these methods
are widely used, they impose certain restrictions on
the failure classes such as infant mortality, random
or wear out failure patterns. A priori assumptions on
the failure distributions need to be specified in the
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reliability modeling process, which at times are diffi-
cult to validate. In addition, only reliability measures
in some fixed time interval are predicted and it is not
easy to forecast the variability of reliability indices
with time. Accurate estimates of reliability indices are
of increasing importance in reliability-related decision
making in industry. Advanced knowledge of reliability
information would allow a more accurate forecast of
spares requirements, support costs, warranty costs and
hence, appropriate preventive maintenance and cor-
rective maintenance plans can be initiated. Especially
for automotive industries, the main concern is to sat-
isfy the increasing demands from customers and con-
form to stricter acts and regulations by governments.

In the existing literatures, the use of neural networks
is not widespread in reliability engineering, especially
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in engine systems analysis. Liu et al.[1] demonstrated
how feed-forward multilayer perceptron (MLP) net-
works can successfully identify underlying failures
distribution and estimate the parameters. Amjady and
Ehsan[2] presented an expert system based on neu-
ral networks in evaluating the reliability of power sys-
tems. However, instead of evaluating the reliability of
the complex systems, this paper attempts to forecast
reliability by analyzing the past historical failure data
information, using neural network techniques. We pro-
posed using radial basis function (RBF) neural net-
work model in predicting failures and reliability due
to its inherent advantages outlined inSection 3. In
recent years, there has been an increasing interest in
using RBF modeling for time series analysis[3], for
fault diagnosis and identification in power systems[4],
and also in contingency analysis of power systems[5].
Furthermore, positive results in using RBF for time
series prediction are shown by Whitehead and Choate
[6], where lower prediction errors are achieved for
predicting the Mackey–Glass time series.

This paper is organized as follows:Section 2
presents some approaches for time series modeling
and describes the framework of a time series reliabil-
ity forecasting model.Section 3describes the archi-
tecture of the RBF neural network. InSection 4, case
studies on analyzing the failure data from turbocharg-
ers of diesel engines and car engines are illustrated
to demonstrate the proposed approach in predict-
ing failures and reliability. A comparative study of
the forecast errors with both MLP and Box–Jenkins
autoregressive-integrated-moving average (ARIMA)
models is summarized. The effects of model param-
eters on the predictive performance and sensitivity
analysis are discussed inSection 5. The concluding
remarks are presented inSection 6.

2. Time series modeling approaches for
systems reliability

2.1. Box–Jenkins models

In assessing the reliability of engine systems, time
series modeling approach offers a viable alternative to
fitting parametric failure distributions. The failure data
or some equivalent reliability indices can be construed
as a time seriesx(t −p), . . . , x(t −2), x(t −1), x(t).

Traditionally, time series forecasting problem is tack-
led using linear techniques such as the autoregressive,
moving average and autoregressive-integrated-moving
average models popularized by Box and Jenkins
[7]. The general form of the ARIMA model is
given by:

yt = a0 +
∑

aiyt−1 +
∑

bj et−j ,

i = 1, . . . , p and j = 0,1, . . . , q

where yt is a stationary stochastic process with
non-zero mean,a0 is the constant coefficient,ei the
white noise disturbance term,ai represents the au-
toregressive coefficients, andbj denotes the moving
average coefficients. The time series linear models
are widely used due to its simplicity, flexibility and
more importantly, the systematic model building ap-
proach that allows even the non-specialists to get
the essence of the methodology. ARIMA models are
preferred over methods based on Bayesian approach
[8,9] which is constrained by the necessary conditions
pertaining to the failure process, which itself might
be arbitrary. In reliability analysis, no a priori spec-
ification of linear models for the failure process is
necessary. However, Box–Jenkins models are some-
times inadequate for situations where the underlying
failure behavior varies dynamically with time. Hence,
other approaches based on nonlinear techniques such
as neural networks can be a promising alternative.

2.2. Neural network models

The artificial neural networks present an impor-
tant class of nonlinear prediction model family that
has generated considerable interest in the forecasting
community in the past decade. While parameters of
the aforementioned nonlinear models need to be de-
termined, neural networks are appealing because no
a priori postulation of the models is necessary for the
system or process under consideration. The model
parameters are iteratively adjusted and optimized
through network learning of historical patterns. As
time series prediction is performed entirely by infer-
ence of future behavior from examples of past behav-
ior, neural networks are therefore viable alternatives
that could lead to improved predictive performance.
Neural nets have found to be the domain for numer-
ous successful applications of prediction tasks[10];
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particularly in electric load forecasting[11], economic
forecasting[12], river flow forecasting[13], etc.

Traditionally, the standard feed-forward MLP neu-
ral network architecture, trained using the backprop-
agation algorithm, is commonly used as benchmark
in time series forecasting. However, the long training
time and local minima problems are often impediment
to their applications. Alternative architectures like the
radial basis function[14,15] neural network presents
a promising model for forecasting the future reliabil-
ity indices of engine systems. This network typically
trains faster than conventional MLP networks[16]
because it can choose suitable parameters of hidden
layer units without having to perform a full nonlinear
optimization of networks and the relationship is linear
between hidden layer and output layer. At the same
time, it possess the universal function approximation
capabilities just as in MLP[17]. As RBF’s hidden
layer nodes influence the outputs of the network only
for inputs near its center, an exponential number of
neighborhoods to cover the entire domain are re-
quired. This suggests that RBF are well suited for time
series problems with a small number of inputs[18],
which is the key to successful parsimonous model
building.

2.3. The proposed time series forecasting of
reliability framework

Our experiments are conducted in accordance to the
general time series forecasting model represented in
this form:

Xt = f (X′, A) (1)

whereX′ is a vector of lagged variables{xt−1, xt−2,

. . . , xt−p}, A = {at } denotes a vector of the external
explanatory variables, i.e. variables on which the time
series is thought to have a dependence. In reliability
analysis,X can be represented in different forms such
as “time between failures”, “time-to-failure” or “to-
tal failure numbers per unit time interval.” The neural
network approach attempts to discover the appropri-
ate internal representation of the time series reliability
data. The key to the solution of forecasting problems
is how to approximate the functionf. By iteratively
adjusting the weights in the modeling process, the au-
tocorrelation between the data can be explored and
better estimates can be obtained.

In time series reliability analysis, neural networks
can first be trained to learn the relationship between
past historical reliability indices and the corresponding
targets, and then predict future failures. Below is an
illustration of how training patterns can be designed
in the neural network modeling process.

X Y

x1 x2 · · · xp ap

x2 x3 · · · xp+1 ap+1

x3 x4 · · · xp+2 ap+2

...
... · · · ...

...

...
... · · · ...

...

xt−p xt−p+1 · · · xt−1 at−1

xp+1

xp+2

xp+3

...

...

xt

where p denotes the number of lagged variables,
(t − p) is the total number of training samples.X
represents the input nodes andY is the predicted
output node. After successful training, the neural net-
work will be able to forecast future outcomesxt+k

at different time stepsk. If k = 1, the prediction is
a single-step-ahead (short-term) forecast and when
k > 1, this leads to multi-step or long-term fore-
casts. Although multi-step forecasting may capture
some system dynamics, the performance will be quite
poor due to the accumulation of errors. In practice,
short-term forecasting results are more useful as they
provide timely information for preventive mainte-
nance and corrective maintenance plans. Thus, we
will only consider single-step-ahead predictions in our
analysis. To evaluate the prediction errors between
competing models, we use the normalized root mean
square error measure (NRMSE), defined as follows:

NRMSE=
√∑

[x(t) − x̂(t)]2∑
x2(t)

(2)

wherex̂(t) is the forecast ofx(t).
Another index used is the improvement rate, which

measures the relative improvement between the NN
model under evaluation and the benchmark AR model:

improvement rate

= NRMSEAR − NMRSENN/NRMSEAR

where the subscripts of NRMSE refer to the specific
model under study.
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3. The RBF neural network for time series
prediction

The RBF neural network model has been proven to
be a universal function approximator, see for example
[16,19]. As an extension of the MLP networks, it can
perform similar function mappings, but its architec-
ture and functionality are quite different. First, RBF
are local networks as compared to the feed-forward
networks that perform global mapping. This means
that RBF uses a single set of processing units, each of
which is most receptive to a local region of the input
space. Second, the hidden layer in RBF performs non-
linear local mapping and its neurons, known as kernel,
each has a centroidci and smoothing radius factorσ i .
Furthermore, the output layer performs linear transfor-
mation. Similar input vectors are clustered and input
to the various hidden nodes. If an input vector lies near
the centroid of a particular cluster, the hidden node will
be activated. In other words, the output of the neuron
decreases as the input is moved away from the cen-
troid, at a rate determined by the radius.The ability of
RBF to recognize whether an input is near the training
set or if it is in an untrained region of the input space
gives the RBF a significant advantage over the MLP
structure. Furthermore, RBF networks can be trained
more rapidly. The use of Gaussian activation functions
can result in networks that learn more accurately and
form a compact representation using small number of
neurons. The basic architecture of the RBF compris-
ing three layers is shown inFig. 1. The input layer is
made up of source nodes whose number is equal to the

Fig. 1. Radial basis function network.

dimension of the input vectorX. The second layer is
the hidden layer composed of nonlinear units that are
connected directly to all of the nodes in the input layer.
The activation function of the individual hidden nodes
are defined by the Gaussian function expressed as
follows:

uj = exp

[
−||X − Cj ||2

2σ 2
j

]
, j = 1,2, . . . , N (3)

whereuj denotes the output of thejth node in hidden
layer,X = [x1, x2, . . . , xn]T is the input vector,Cj

the position vector of the centers of thejth Gaussian
function,σ 2

j the width of the Gaussian function of the
jth node andN denotes the number of hidden layer
nodes. The output layer supplies the response of the
network to the activation patterns applied to the in-
put layer. The transformation from the input space to
the hidden-unit space is nonlinear, whereas the trans-
formation from the hidden-unit space to the output
space is linear and the solution of the outputs has the
form:

yk =
N∑
j=1

wkjuj = WT
k U, k = 1,2, . . . , m (4)

and the linear weights vector associated with the out-
put layer denoted as follows:

Wk = [wk1, wk2, . . . , wkN]T

There are several techniques for determining the
weights. TheCj and σ 2

j are typically found using
an unsupervisedk-means clustering technique and
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Wk is obtained by a supervised learning algorithm
using steepest descent method. For effective learn-
ing, the input normalization and output encoding are
very important. In this present study, the inputs are
scaled from 0.1 and 0.9 as the network is less accu-
rate in discriminating inputs close to the boundary
values and the normalization process also span sim-
ilar ranges. Note that the performance of the RBF

Table 1
Turbochargers failure data

Failure order
number (i)

Time-to-failure
(T/1000 h)

1 1.6
2 2.0
3 2.6
4 3.0
5 3.5
6 3.9
7 4.5
8 4.6
9 4.8

10 5.0
11 5.1
12 5.3
13 5.4
14 5.6
15 5.8
16 6.0
17 6.0
18 6.1
19 6.3
20 6.5
21 6.5
22 6.7
23 7.0
24 7.1
25 7.3
26 7.3
27 7.3
28 7.7
29 7.7
30 7.8
31 7.9
32 8.0
33 8.1
34 8.3
35 8.4
36 8.4
37 8.5
38 8.7
39 8.8
40 9.0

is very sensitive to the design parameters. However,
it is observed thatk-means method can find suitable
position and width of the basic functions from the
reliability data. In order to prevent over-training, we
adjust the number of hidden layer neurons step by
step. A suitable number can be found by comprising
the training and forecasting errors, i.e. when both of
the training and forecasting errors approach to the
minimum.

Table 2
Reliability of turbochargers

i Ti /1000 h R(Ti )

1 1.6 0.9930
2 2.0 0.9831
3 2.6 0.9731
4 3.0 0.9631
5 3.5 0.9532
6 3.9 0.9432
7 4.5 0.9333
8 4.6 0.9233
9 4.8 0.9133

10 5.0 0.9034
11 5.1 0.8934
12 5.3 0.8835
13 5.4 0.8735
14 5.6 0.8635
15 5.8 0.8536
16 6.0 0.8436
17 6.0 0.8337
18 6.1 0.8237
19 6.3 0.8137
20 6.5 0.8038
21 6.5 0.7938
22 6.7 0.7839
23 7.0 0.7739
24 7.1 0.7639
25 7.3 0.7540
26 7.3 0.7440
27 7.3 0.7341
28 7.7 0.7241
29 7.7 0.7141
30 7.8 0.7042
31 7.9 0.6942
32 8.0 0.6843
33 8.1 0.6743
34 8.3 0.6643
35 8.4 0.6544
36 8.4 0.6444
37 8.5 0.6345
38 8.7 0.6245
39 8.8 0.6145
40 9.0 0.6046
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Table 3
Forecasting results of turbochargers reliability using different neural network architectures (without explanatory variable,p = 3, N = 25)
and AR model

Number Reliability (actual) MLP (logistic activation) MLP (Gaussian activation) RBF (Gaussian activation) AR

36 0.6444 0.6589 0.6515 0.6466 0.646000
37 0.6345 0.6532 0.6446 0.6369 0.639234
38 0.6245 0.6479 0.6383 0.6270 0.633807
39 0.6145 0.6430 0.6328 0.6170 0.629354
40 0.6046 0.6384 0.6278 0.6072 0.625562

NRMSE 0.0397 0.0250 0.0039 0.0199

Improvement rate −99.497% −25.628% 80.402%

Table 4
A summary of reliability forecasts using different neural network models (with explanatory variablesp = 3, N = 10)

Number Reliability (actual) MLP (logistic activation) MLP (Gaussian activation) RBF (Gaussian activation)

36 0.6444 0.6601 0.6539 0.6440
37 0.6345 0.6542 0.6476 0.6331
38 0.6245 0.6471 0.6441 0.6214
39 0.6145 0.6419 0.6389 0.6110
40 0.6046 0.6357 0.6360 0.6004

NRMSE 0.0384 0.0338 0.0046

Fig. 2. Reliability turbocharger training and forecasting resulting without the explanatory variables (p = 3, N = 25).
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Fig. 3. Reliability turbocharger training and forecasting result with the explanatory variables (p = 3, N = 10).

4. Application examples and numerical
comparisons

4.1. Reliability forecast of turbochargers
in diesel engines

The turbocharger is a critical component in the
turbo-charged diesel engine. As reliability is one of
the most important considerations for diesel engine

Fig. 4. The effect of hidden layer unitsN on training and testing forecast performance (p = 3, without explanatory variable).

systems design, an accurate forecast of its reliability
will provide a good assessment of its performance.
Table 1 tabulates the original test records of the
time-to-failure data for 40 suits of turbochargers.
When analyzing ungrouped failure data, the cumula-
tive failure distribution can be estimated from gener-
ating the median plotting positions for theith ordered
failures. This approach is preferred because the cu-
mulative failure distribution is skewed for values
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of i close to zero and close to the sample sizen.
For skewed distributions, median ranking provides
a better correction than mean ranking. The reliabil-
ity estimates can thus be computed according to the
following formula [20] due to Benard approximation.

R(Ti) = 1 − i − 0.3

n + 0.4

The estimated reliability information of turbochargers
are summarized inTable 2.

In this example, two designs of training patterns
are investigated. The first design includes the ex-
planatory variable ‘failure time’ as an input node for

Fig. 5. The effect of hidden layer unitsN on training and testing
forecast performance (p = 3, without explanatory variable).

Fig. 6. The effect of lagged variables numberp on training and
testing forecast performance.

Fig. 7. The effect of lagged variables numberp on training and
testing forecast performance.

Table 5
Car engines’ miles-to-failure (× 1000 miles)

Number MTF

1 37.1429
2 37.4286
3 37.6190
4 38.5714
5 40.0000
6 35.8095
7 36.2857
8 36.2857
9 36.4762

10 38.1905
11 36.1905
12 36.8571
13 37.6190
14 37.8095
15 38.7619
16 35.9048
17 36.4762
18 36.8571
19 37.1429
20 37.4286
21 37.4286
22 37.6190
23 38.3810
24 38.5714
25 39.4286
26 35.8095
27 36.9524
28 37.6190
29 37.8095
30 38.0952
31 36.8571
32 38.0952
33 38.0952
34 38.3810
35 39.0476
36 37.2381
37 37.3333
38 37.5238
39 37.8095
40 38.5714
41 37.1429
42 37.2381
43 37.6190
44 38.1905
45 38.5714
46 36.0952
47 37.2381
48 37.4286
49 37.5238
50 39.0476
51 37.1429
52 37.8095
53 38.0952
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Table 5 (Continued )

Number MTF

54 38.6667
55 40.0619
56 36.1905
57 36.3810
58 37.0476
59 37.2381
60 38.0000
61 35.7143
62 36.4762
63 37.3333
64 37.6190
65 38.4762
66 36.8571
67 37.1429
68 37.9048
69 38.0952
70 38.8571
71 37.1429
72 37.6190
73 37.6190
74 37.8095
75 38.3810
76 36.3810
77 38.0000
78 38.1905
79 38.6667
80 38.6667
81 37.1429
82 37.6190
83 37.6190
84 38.0952
85 39.0476
86 36.2857
87 37.1429
88 37.5238
89 37.8095
90 38.0000
91 36.8571
92 37.0476
93 37.9048
94 38.1905
95 39.5238
96 35.4286
97 36.0000
98 37.7143
99 38.0952

100 38.5714

the input layer, whereas the other design excludes
this variable in the training process. We have trained
the proposed RBF network for 6000 iterations and
the forecasting results for both designs, i.e. with and

without the explanatory variables, are analyzed. At
the same time, the predictive performances of both
MLP and Box–Jenkins models are compared. In the
ARIMA modeling process, it was found that the AR
model is appropriate as it provides a good fit to the
failure data. The comparative results are shown in
Tables 3 and 4. The variablesp and N denotes the
design parameters for input window size and number
of hidden nodes respectively.

Optimal results can be attained from simulation
experiments. For the case with explanatory variable,
the setting isp = 3 andN = 10. As for the design
without the explanatory variable,p = 3 andN = 25.
It is noted that the former (with explanatory variable)
gives rise to higher forecast errors. In addition, the
errors are also higher when identical network param-
eters (p = 3,N = 25) are simulated. The results here
suggest that inputs with explanatory variables might
not definitely enhance the predictive performance.
The graphical comparisons between the actual and
predicted reliability are shown inFigs. 2 and 3. It
is observed that the proposed RBF neural model fits
this particular data set very well.Figs. 4–7investigate
the effect of hidden layer nodesN and the number of
lagged variablesp on the training and testing forecast
performance of RBF networks for the two designs.
It is observed that network without the explanatory
variable seems to have more satisfactory predictive
performance. A design with 5 or 10 hidden nodes has
a larger forecasting error than that with 25 hidden
nodes. We also found that the training error is signif-
icantly larger, which means that the generalization is
not good when the number of hidden nodes is 5 or 10.

4.2. Miles-to-failure forecast of car engines

The miles-to-failure data for 100 units of a specific
brand of car engine is collected inTable 5. The objec-
tive is to forecast future miles-to-failure of car engines
based on past failure observations. Hence, using the
reliability forecasting framework explained earlier, the
training and test patterns can be generated. We em-
ploy patterns 1–90 as the training samples and the last
10 from 91 to 100 as the testing samples.

After training the network for 20000 iterations, the
predictive performances of the MLP, RBF and ARIMA
models are summarized inTable 6. It is found that the
RBF predictive performance is still satisfactory and
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Table 6
Forecasting results of car engines’ MTF using different neural network architectures (p = 5, N = 16)

Number Miles-to-failure (actual)
(× 1000 miles)

MLP (logistic activation)
(× 1000 miles)

MLP (Gaussian activation)
(× 1000 miles)

RBF (Gaussian activation)
(× 1000 miles)

AR

91 36.85710 37.0259 36.9917 37.1096 37.3546
92 37.04760 37.8178 37.4988 37.7532 36.3213
93 37.90480 37.8254 37.7549 38.0020 37.0603
94 38.19050 38.5449 38.4238 37.9306 38.3013
95 39.52380 38.8205 39.4327 38.2064 38.7083
96 35.42860 36.5156 36.1145 36.9375 39.3056
97 36.00000 36.4749 36.3036 36.3272 34.177
98 37.71430 36.8491 36.9533 36.8791 36.3164
99 38.09520 37.9428 37.2913 37.2870 38.3696

100 38.57140 38.7185 38.3821 38.1781 40.1801

NRMSE 0.0156 0.0122 0.0211 0.0422

Improvement rate 63.03% 71.09% 50%

Fig. 8. The effect of hidden layer neuronsN on training and testing forecast performance (p = 5).

comparable with both MLP and AR models. Higher
training and testing errors are expected compared to
the previous example due to the stochastic behavior
and cyclic patterns of the time series. This is evident in
Figs. 8 and 9that evaluates the effects of hidden layer
unitsN and lagged variables numberp respectively, on
the forecast performance of RBF network. The graph-
ical plot of the actual and predicted miles-to-failure is
presented inFig. 10.

5. Discussions

Some observations can be drawn by analyzing
Figs. 4–9. First, there appears to be a strong corre-
lation between training error and forecasting error
for most of the comparisons. Secondly, the parame-
ters of RBF architecture (i.e. the number of hidden

layer neuronsN and the number of lagged vari-
ablesP) affect the forecasting performance greatly.
The sensitivity analysis curves of these two param-
eters are shown inFigs. 11 and 12, respectively.
Note that for a more meaningful comparison, the
y-axis of both the graphs has been normalized us-
ing NRMSE(i) = log10{NRMSE(i)/min(NRMSE)}.
The results showed that varying the number of hidden
layer neurons affects the forecasting performance.
Generally, the NRMSE decreases with increasing
number of hidden layer neurons.

It can be seen that for the car engine failure data,
the prediction error is the smallest when the maximum
number of hidden layer neurons is specified, which
could be obtained by thek-means clustering tech-
niques. This is reasonable because with more hidden
neurons in the RBF one can thus produce finer grid
for the inputs by using a suitable clustering method.
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Fig. 9. Predictive performance of MTF for car engines (p = 5, N = 16).

On the other hand, a rough partition could make the
training impossible. However, it is cautioned that a
very fine partition could compromise its generaliza-
tion ability. Too large a number of basis functions in
RBF can cause over-fitting of the data and will result
in poor generalization. Too small a number of these
functions may lead to poor approximation accuracies
[21]. This can be seen clearly inFig. 11.

Furthermore, the results showed that there exists
some optimal number of hidden neurons with least

Fig. 10. The effect of lagged variable numberp on training and
testing forecast performance (N are different values).

prediction errors. In our analysis, the range and num-
ber of hidden neurons evaluated is determined a priori
and the optimal number is obtained via trial-and-error.
When the predefined number is larger than the maxi-
mum, some clustering groups will be empty. It leads
to the question of how the optimum number of ba-
sis function and optimum choice of RBF centers can
be determined. Techniques such as orthogonal least
squares learning[22] and genetic algorithm[5] has
been proposed to circumvent this problem.

In addition, for different failure data sets, the opti-
mal number of lagged variablesp in the forecasting
model can be found. In the case of car engine failures
as highlighted inFig. 12, using a number less than
five will make NRMSE increase quickly, while any
number larger than this optimal does not seem to have
an impact enhancing the forecasting performance or
cause it to worsen quickly. Similar interpretations can
be drawn from the turbocharger failures.

Chaos theory implies that a time series, which seems
to be random, may be generated by a deterministic
function. As a consequence of Takens’s embedding
theorem[23], where the unknown dynamics in the true
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Fig. 11. The sensitivity analysis curve ofN.

space can be estimated from the dynamics in the re-
constructed space of lag vectors, prediction of future
observationx(t + 1) is made possible from past his-
torical lagged variables, using appropriate time series

Fig. 12. The sensitivity analysis curve ofP.

models. Takens proved that there exits a smooth un-
known function that will correctly predict future value
of a time series using at most 2n + 1 past measure-
ment,n is the information dimension. Results from our
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examples showed that the optimal number of lagged
variable is three or five. This implies that the informa-
tion dimension of these engine failures time series is
close to one or two. Note that, as the dimensionality
of the input space increases, the data may occupy an
ever smaller sub-volume so that the number of hid-
den nodes of RBF does not have to expand so as to
cover all of the possible domain of functions, the in-
creasing of the predicting error is due to the break-
ing down of the concept of local neighborhood as
the input space dimensionality grows. Thus, in some
cases, it may become a limitation in view of the min-
imum number of the embedded space that is required
by Takens’s theorem. Thus a reasonable estimation of
the minimum dimension in the choice of time lags
is of interest. From our experiments, we recommend
that initially 3–5 is a suitable value for the choice of
time lags.

6. Conclusion

In this paper, the neural network approach for fore-
casting reliability and failures of engine systems is
investigated. A comparative study of the predictive
performance of various time series models are eval-
uated. Results from two case studies showed that the
use of neural network models in forecasting the fail-
ures and reliability of engine systems is appropriate.
The significance of this research is that no a priori
specifications of parametric failure distributions need
to be assumed and tested. A time series modeling
technique using neural networks provides a promis-
ing alternative and leads to better predictive perfor-
mance than the linear benchmark ARIMA models.
Furthermore, it was demonstrated that the proposed
RBF architecture is capable of achieving compara-
ble or lower prediction errors, compared to tradi-
tional feed-forward MLP network and Box–Jenkins
models.

The application of neural networks for reliability
data analysis is relatively new. The positive results
shown in this research have clearly demonstrated the
potential of this approach in predicting failures and
reliability. Future works can be centered on design-
ing optimal neural network forecasting models and
exploring design parameters for improved predictive
performance.
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