1. (a) This is the same as asking how many ways are there to permute 6 distinct objects (the cities). To "permute" means to arrange in a particular order. There are

$$6! = 720$$
 possible itineraries.

- (b) This means each itinerary has the same probability (chance) of being selected. Therefore, each itinerary has probability 1/720 of being selected.
- (c) In part (a), we calculated $n_S = 720$, the number of possible itineraries. Define the event

$$A = \{ \text{West coast and East coast cities grouped together} \}.$$

How many itineraries satisfy this event? That is, what is n_A ? Think of one itinerary satisfying A as follows:

We can determine n_A using the multiplication rule of counting:

- there are $n_1 = 2$ ways to order the coasts (visit West coast cities first or visit East coast cities first)
- there are $n_2 = 3!$ ways to permute the West coast cities
- there are $n_3 = 3!$ ways to permute the East coast cities.

There are

$$n_A = 2 \times 3! \times 3! = 72$$

itineraries satisfying the event A. Assuming each itinerary is equally likely,

$$P(A) = \frac{n_A}{n_S} = \frac{72}{720} = \frac{1}{10}.$$

2. (a) Define the events

$$A = \{ \text{bid prepared by Engineer 1} \}$$

$$B = \{ \text{bid contains an error} \}.$$

We are given P(A) = 0.70, P(B|A) = 0.02, and P(B|A') = 0.04.

(b) Use the Law of Total Probability. The proportion of all bids that will contain an error is

$$P(B) = P(B|A)P(A) + P(B|A')P(A')$$

= 0.02(0.70) + 0.04(0.30)
= 0.026.

(c) We are told that the bid contains an error so B has occurred. We want P(A|B). We can use Bayes' Rule to get this:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A')P(A')} = \frac{0.02(0.70)}{0.026} = \frac{7}{13} \approx 0.538.$$

- **3.** (a) The random variable X is discrete because it has a finite number of possible values. We can list them out: 0, 1, 2, 3, and 4.
- (b) The mean number of serious accidents per year is

$$E(X) = \sum_{\text{all } x} x p_X(x)$$

= 0(0.5) + 1(0.2) + 2(0.1) + 3(0.1) + 4(0.1) = 1.1.

(c) The cdf of X is easy to prepare by hand, but I used R:

4. (a) Let X denote the number of defective devices out of the 10 tested. Under the Bernoulli trial assumptions (next part), we have $X \sim b(10, 0.03)$. We want

$$P(X = 1 \text{ or } 2) = P(X = 1) + P(X = 2)$$

$$= {10 \choose 1} (0.03)^{1} (0.97)^{9} + {10 \choose 2} (0.03)^{2} (0.97)^{8}$$

$$= 10(0.03)(0.97)^{9} + 45(0.0009)(0.97)^{8} \approx 0.260.$$

- (b) The binomial distribution arises for X only when the Bernoulli trial assumptions hold. For this problem, they are
 - 1. Each device is either defective or it is not.
 - 2. The devices are independent. That is, the defective status of one device is not affected by the other devices.
 - 3. The probability of a defective device, p = 0.03, is the same for all devices made by the manufacturer.
- **5.** A graph of the pdf $f_X(x)$ is on the next page. In part (a), we want

$$P(X < 0.4) = \int_0^{0.4} f_X(x) dx = \int_0^{0.4} 0.25(2-x)^3 dx.$$

To do the last integral, let

$$u = 2 - x \implies du = -dx.$$

With this u-substitution (noting the change in limits), the last integral equals

$$\int_{2}^{1.6} 0.25u^{3}(-du) = 0.25 \int_{1.6}^{2} u^{3} du = 0.25 \left(\frac{u^{4}}{4}\right)\Big|_{1.6}^{2} = \frac{1}{16} \left[2^{4} - (1.6)^{4}\right] = 1 - \frac{(1.6)^{4}}{16} \approx 0.590.$$

Therefore,

$$P(X < 0.4) \approx 0.590.$$

(b) We want to find the supply c so that

$$P(X > c) = 0.01 \iff P(X < c) = 0.99.$$

That is, c is the 99th percentile of the distribution of X. We have

$$P(X < c) = \int_0^c f_X(x)dx = \int_0^c 0.25(2-x)^3 dx.$$

Use the same u-substitution as in part (a). The last integral equals

$$\int_{2}^{2-c} 0.25u^{3}(-du) = 0.25 \int_{2-c}^{2} u^{3} du = 0.25 \left(\frac{u^{4}}{4}\right) \Big|_{2-c}^{2} = \frac{1}{16} \left[2^{4} - (2-c)^{4}\right] = 1 - \frac{(2-c)^{4}}{16}.$$

Now, set

$$1 - \frac{(2-c)^4}{16} \stackrel{\text{set}}{=} 0.99$$

and solve for c. We have

$$\frac{(2-c)^4}{16} = 0.01 \implies (2-c)^4 = 0.16 \implies 2-c = (0.16)^{1/4} \implies c = 2 - (0.16)^{1/4} \approx 1.3675.$$

The capacity should be set at approximately 13,675 gallons.

6. (a) Let X denote the number of cars entering the tunnel per hour. We assume $X \sim \text{Poisson}(\lambda = 10)$. We want

$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$

$$= \frac{10^{0}e^{-10}}{0!} + \frac{10^{1}e^{-10}}{1!} + \frac{10^{2}e^{-10}}{2!}$$

$$= e^{-10}\left(1 + 10 + \frac{100}{2}\right)$$

$$\approx 0.0028.$$

(b) Let T denote the time until the first car enters the tunnel so that $T \sim \text{exponential}(\lambda = 10)$. We want

$$P(T > 0.5) = 1 - P(T \le 0.5) = 1 - F_T(0.5),$$

where $F_T(0.5)$ is the exponential $(\lambda = 10)$ cdf evaluated at t = 0.5. We have

$$1 - F_T(0.5) = 1 - [1 - e^{-10(0.5)}] = e^{-5} \approx 0.0067.$$

- 7. (a) The Weibull distribution looks like a good model for the ignition time. The histogram of the data has the typical "skewed-right" shape we would expect from the Weibull pdf, and the qq plot shows very good agreement between the observed ignition times and the Weibull quantiles.
- (b) We want to estimate

$$P(T < 5) = F_T(5) = 1 - \exp\left[-\left(\frac{5}{\eta}\right)^{\beta}\right]$$

using $\widehat{\beta}$ and $\widehat{\eta}$ as estimates of β and η . We have

$$1 - \exp\left[-\left(\frac{5}{5.91}\right)^{2.05}\right] \approx 0.508.$$

Therefore, we would estimate about 50.8% of the upholstery pieces would ignite before 5 seconds.

(c) The survivor function

$$S_T(t) = P(T > t)$$

would represent the proportion of upholstery pieces in the population whose ignition time is larger than t.