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CHAPTER 1 STAT 509

1

Introduction

Definition: Statistics is the science of data; how to interpret and visualize data, analyze
data, and design studies to collect data.

e Statistics is used in all disciplines; not just in engineering.

e “Statisticians get to play in everyone else’s back yard.” (John Tukey)
Examples:
1. In a reliability (time to event) study, engineers are interested in describing the time

until failure for a jet engine fan blade.

In a genetics study involving patients with Alzheimer’s disease, researchers wish to
identify genes that are differentially expressed (when compared to non-AD patients).

In an agricultural experiment, researchers want to know which of four fertilizers (which
vary in their nitrogen levels) produces the highest corn yield.

In a clinical trial, physicians want to determine which of two drugs is more effective
for managing weight loss in pre-diabetic patients.

In a public health study involving “at-risk” teenagers, epidemiologists want to know
how smoking behavior differs across demographic classes.

A food scientist is interested in determining how different feeding schedules (for pigs)
could affect the spread of salmonella during the slaughtering process.

A pharmacist wants to determine if administering caffeine to premature infants in-
creases the risk of necrotizing enterocolitis.

. A research dietician wants to determine if academic achievement is related to BMI

among students in the fourth grade.

What we do: Statisticians (and data scientists) use their skills in mathematics and com-
puting to formulate statistical models and analyze data for a specific problem at hand. These
models are then used to estimate important quantities of interest, to test the validity of pro-
posed conjectures, and to predict future behavior. Being able to identify and model sources
of variability are critical parts of this process.

Definition: A deterministic model makes no attempt to explain variability.

e In chemistry, the ideal gas law states

PV = nRT,

where P = pressure of a gas, V' = volume, n = amount of substance of gas (number
of moles), R = Boltzmann’s constant, and 7' = temperature.
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CHAPTER 1 STAT 509

e In circuit analysis, Ohm’s law states
V =1R,
where V' = voltage, I = current, and R = resistance.

In both of these models, the relationship among the variables is completely determined
without ambiguity. In real life, this is rarely true for the obvious reason: there is natural
variation that arises in the measurement process.

e For example, a common electrical engineering experiment involves setting up a simple
circuit with a known resistance R. For a given current I, different students (using a
mulitmeter) will then measure the voltage V.

— With a class of 20 students, conducting the experiment with the same current I,
we might get 20 different voltage measurements Vi, Vs, ..., Vag.

— A deterministic model is too simplistic; it does not acknowledge the inherent
variability that arises in the measurement process.

Important: Statistical models are not deterministic. They incorporate variability with
the hope of describing what is going on in a larger population of individuals. They can
also be used to predict future outcomes for specific individuals, a common task in machine
learning and artificial intelligence.

Example 1.1. An article by Liu et al. (1996) in Journal of Air and Waste Management
Association described a research study motivated by the waste disposal problems in Kaoh-
siung City, Taiwan. The goal was to develop a statistical model to explain how the response
variable

Y = energy content of solid waste specimen when incinerated (kcal/kg)
was related to four independent variables measured on each waste specimen

x1 = plastic by weight (measured as % of total weight)
xe = paper by weight (measured as % of total weight)
x3 = garbage by weight (measured as % of total weight)

x4y = moisture percentage.

One way to think about this modeling problem—from a purely mathematical point of view—is
to assume there is a function f that links the response variable Y to the independent variables
for all waste specimens that will ever be collected, say

Y — f($1,$2,1'3,$4).

This is how a mathematician might formulate the problem—by using a deterministic
model. Of course, the overarching problem is that the function f is likely unknown in
real life so hence the model is not all that helpful. This is where statistics comes in.
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Table 1.1: Waste incineration data. Measurements of energy, plastic percentage, paper
percentage, garbage percentage, and moisture for a sample of 30 waste specimens.

Specimen Energy (V) Plastic (1) Paper (x2) Garbage (x3) Moisture (z4)

1 947 18.69 15.65 45.01 58.21
2 1407 19.43 23.51 39.69 46.31
3 1452 19.24 24.23 43.16 46.63
4 1553 22.64 22.20 35.76 45.85
) 989 16.54 23.56 41.20 55.14
6 1162 21.44 23.65 35.56 04.24
7 1466 19.53 24.45 40.18 47.20
8 1656 23.97 19.39 44.11 43.82
9 1254 21.45 23.84 35.41 51.01
10 1336 20.34 26.50 34.21 49.06
11 1097 17.03 23.46 32.45 53.23
12 1266 21.03 26.99 38.19 51.78
13 1401 20.49 19.87 41.35 46.69
14 1223 20.45 23.03 43.59 53.57
15 1216 18.81 22.62 42.20 52.98
16 1334 18.28 21.87 41.50 47.44
17 1155 21.41 20.47 41.20 04.68
18 1453 25.11 22.59 37.02 48.74
19 1278 21.04 26.27 38.66 53.22
20 1153 17.99 28.22 44.18 53.37
21 1225 18.73 29.39 34.77 51.06
22 1237 18.49 26.58 37.55 50.66
23 1327 22.08 24.88 37.07 50.72
24 1229 14.28 26.27 35.80 48.24
25 1205 17.74 23.61 37.36 49.92
26 1221 20.54 26.58 35.40 93.58
27 1138 18.25 13.77 51.32 51.38
28 1295 19.09 25.62 39.54 50.13
29 1391 21.25 20.63 40.72 48.67
30 1372 21.62 22.71 36.22 48.19

Discussion: A statistician will think of this problem as
Y = f(x1, 22, 23, 24) + €,

where the extra term e incorporates all the sources of variability that make Y different than
f(x1, z2, 23, 24). This could include

e independent variables that are not accounted for in the research study

e measurement error (e.g., are all the percentages measured correctly? the energy content
measurements?)
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e natural sampling variability, that is, the variability that arises from looking at a sample
of waste specimens taken from a larger population.

— Different samples of waste specimens will produce different data sets!
All of these sources of variability make € random. We call
Y = f(fljl,.’lfg, x37$4) + €,

a statistical (or probabilistic) model to acknowledge this. Statistical models acknowl-
edge the relationship between (or among) variables is not perfect. This is more realistic.

Q: So, how do we estimate f with the sample of waste specimens like those in Table 1.17
A: We could estimate f nonparametrically. That is, make no assumption about the form of
f and use the observed data to select the function f that most closely matches the data.

e This is a challenging problem statistically and would give rise to a “wiggly” highly
nonlinear function of z1, x2, x3, and x4 as the solution.

e The function chosen might be hard to interpret on practical grounds.

e Predictions might give far too much weight to the data. This would be bad if new
waste specimens did not align with the sample.

A: Another approach (which is more common) is to make simplifying assumptions about
the form of f, say, that f is linear function of the independent variables, that is,

Y = Bo + Biw1 + Boxa + B33 + Bazy + €.
This is called a multiple linear regression model.
e The coefficients By, 51, P2, B3, and B4 are called regression parameters.

e They describe how Y is related to the independent variables in the population of all
waste specimens.

e Therefore, under the simplifying assumption that the relationship between Y and the
independent variables is linear, we have reduced the problem of “estimating f” to
finding values of By, 51, B2, PB3, and B4 which “best fit” the observed data in Table
1.1. This problem can be solved easily using linear algebra calculations and will be
discussed in Chapter 11.

Remark: Statistical models incorporate randomness. Randomness arises in probability,
which is known as “the mathematics of uncertainty.” Therefore, probability and uncertainty
form the basis for all statistical analyses.

e Chapters 2-5 deal with probability and probability models for single variables.

e Chapter 6 is a “bridge” chapter. Chapters 7-12 deal with statistical methods to analyze
data.
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2 Probability

Example 2.1. A local television station’s meteorologist announces,
“There is a 30 percent chance of rain tomorrow.”
How do you interpret this statement?

(a) It will rain tomorrow for 30 percent of the time. That is, for 7.2 hours tomorrow, it
will be raining. For the remaining 16.8 hours, it will not be raining.

(b) It will rain tomorrow in 30 percent of the region covered by the local television station.
It will not rain in the other 70 percent of the region.

(c) Among all local meteorologists, 30 percent of them think it will rain tomorrow. The
remaining 70 percent of the meteorologists think it will not rain tomorrow.

(d) Thirty percent of all inhabitants of the region covered by this local television station
will see rain at least once during their day tomorrow; the remaining 70 percent will
not see rain during their day.

(e) It will rain on 30 percent of the days in which this same forecast is made.

Discussion: The statement incorporates uncertainty about a future event—the event that
it will rain tomorrow. The phrase “30 percent” can be interpreted as a probability. None
of us know for sure whether it will rain tomorrow, so we are dealing with a random event.
We can write this as

P(A) =0.30,

where the event
A = {it rains tomorrow}.

In this example, we are given five different interpretations of P(A) = 0.30. I think interpre-
tation (e) makes the most sense, but all five interpretations are valid depending on how one
conceptualizes the problem.

Example 2.2. I have a class with 50 students in it. Assuming there are no twins (or other
multiple births), what is the probability there is at least one shared birthday among the
students? Remember there are 365 days in a year.

(a) P(A)=0.1
(b) P(A) =02
(¢) P(A) = 0.4
(d) P(A)=038
(e) P(A) = 0.9
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Figure 2.1: Relative frequency plot of the proportion of defective bottles (i.e., bottles that
do not conform to specifications). A total of 1000 bottles are observed. A dotted horizontal
line at 0.11 is added.

Q: For a future event A, how do we interpret what P(A) means?

A: One way to think about P(A) is that it represents the long-run proportion of times A
would occur if we were to repeat the same phenomenon over and over again. The event A
may occur on some repetitions and not on others; P(A) is the proportion of times it will
occur in the long-run. This is the relative frequency interpretation of probability.

Example 2.3. Plastic bottles for liquid laundry detergent are formed by blow molding, a
manufacturing process used to create hollow plastic parts (often bottles and containers) by
inflating a heated plastic tube inside a mold. Previous data from statistical process control
monitoring suggests 11 percent of the bottles do not conform to specifications.

Imagine observing bottles one by one and define
A = {bottle does not conform to specifications}.

For each bottle observed, we note if A occurs or not. Figure 2.1 graphs what the relative
frequency of the event A might look like over time when observing 1000 bottles.
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2.1 Sample spaces and events

Remark: We use the phrase “random experiment” to mean an experiment which has many
possible outcomes but we cannot predict with certainty which outcome will occur.

e Even if the experiment is performed the same way every time, we could still get different
outcomes. “Cannot predict with certainty” means that each outcome (or collection of
outcomes) has a probability associated with it.

Definition: The set of all possible outcomes for a random experiment is called the sample
space, denoted by S. An event A is a subset of the sample space.

Result: If each outcome in S is equally likely (and ng < co), then

na
P (A) =
ns
where
n, = number of outcomes in A
ng = number of outcomes in S.

Example 2.4. Pick 3 is a three-digit number game from the South Carolina Education
Lottery. We can think of playing this lottery as a random experiment with sample space

S = {000, 001,002, ..., 998,999}

The number of outcomes in S is ng = 1000. Suppose every week I purchase three tickets

with the following numbers:
A = {364,446, 540}.

The probability I win is

na 3
P(A) = — = —— =0.003.
(4) ng 1000 0.003

Q: Each ticket costs $1. Why is the payout for a winning ticket only $5007 If the game was
fair, shouldn’t it be closer to $1,0007

Example 2.5. Suppose we continue to observe plastic bottles in Example 2.3 until we find
the first bottle that does not conform to specifications (i.e., is “defective”). The sample
space is

S = {d, cd, ccd, ceed, cceed, ceeced, ..., },

where “c” and “d” represent bottles that “conform” and are “defective,” respectively.

Q: What is the probability we see the first defective bottle on the first or second bottle
observed? This corresponds to the event

A = {d,cd}.
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A: There are two problems. First of all, the sample space S does not contain a finite number
of outcomes (i.e., it is countably infinite). Therefore, ng = +o00 and even writing

na
P(4) =2

would make no sense. Furthermore, the outcomes in S are not equally likely. It is reasonable

to assign
P({d})=0.11

for the first outcome in A because 11 percent of the bottles are thought to be defective.
However, what is P({cd})? We can’t calculate this without making additional assumptions.

Definitions: The union of two events A and B is the event containing outcomes in A or
B. The intersection of two events A and B is the event containing outcomes in A and B.
We write

AUB <— union (“or”)
ANB <«— intersection (“and”).

Example 2.6. A medical professional observes adult male patients entering an emergency
room. She classifies each patient according to his blood type (AB*, AB~, A", A=, Bt B~
O*, and O~) and whether his systolic blood pressure (SBP) is low (L), normal (N), or high
(H). Imagine observing the next male patient as a random experiment. The sample space is

S = {(AB*,L),(AB",L),(A*,L),(A",L),(B*

(AB™,N), (AB™,N), (A", N), (
(AB*,H), (AB™, H), (A%, H), (

,L),(B7,L),(07,L), (07, L),
ATN), (B+ N),(B7,N),(O",N),(O7,N),
A" H),(B",H),(B",H), (0", H), (0", H)}.

Remarks:

e There are 8 different blood types. There are 3 different categorizations of SBP. There
are 8 X 3 = 24 possible outcomes in the sample space, which is formed by combining
the two factors. This illustrates the multiplication rule of counting.

e Are these 24 outcomes equally likely? Probably not. OT is by far the most common
blood type among American males (about 38 percent). On the other hand, AB™ is
rare (only about 1 percent). Similarly, most American males have either normal or
high SBP; fewer have low SBP.

e Even though we have listed all possible outcomes in S, we have not specified probabil-
ities associated with the outcomes. We cannot assign probability to events like

A = {blood type with a * rhesus status}
B = {high SBP}

without having this information.
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List the outcomes in AU B and AN B.

AUB = {outcomes with a ™ rhesus status or high SBP}
{(AB™,L), (A",L),(B*,L),(0O%,L), (AB*,N), (A*,N), (B",N), (O",N),
(AB*,H), (AB™,H),(A",H),(A,H),(B*,H),(B7,H), (0", H),(O",H)}

ANB = {outcomes with a ™ rhesus status and high SBP}
{(AB",H), (A", H), (B",H), (0", H)}

Discussion: The notions of union and intersection can be extended to more than two events.

For example,
AuBUC

means either A, B, or C' occurs. The event
AnBNnCND
means all four events A, B, C', and D occur. The event
(ANB)U(CNDNE)

means either AN B or C'N DN E occurs. For any finite number of events Ay, As, ..., A,,, we
write

n
U A=A UAU---UA, +— “at least one A; occurs”
i=1

n
ﬂ A=A NAnN---NA, +— “each A; occurs”.
i=1

Definition: If the events A and B contain no common outcomes, we say the events are
mutually exclusive. In this case,

P(ANB) = P() = 0.

It is not possible for A and B to both occur.

2.2 Counting techniques

Importance: When each outcome in S is equally likely, we learned

na
P(A) = —,
(4) = 2
where ng and na count the (finite) number of outcomes in S and A, respectively. In some
random experiments, counting techniques can help to determine ng and ny.
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Multiplication rule (for counting): Suppose a random experiment involves k factors
where

n,; = number of outcomes for factor 1
ny = number of outcomes for factor 2
n; = number of outcomes for factor k.

The total number of outcomes is
k
Hni:nl X Ng X+ X Ng.
i=1

Example 2.7. A random experiment consists of selecting a standard South Carolina license
plate which consists of 3 letters and 3 numbers. We can think of one outcome in the sample
space S as having the following structure:

(—— — )

Q: How many standard plates are possible; i.e., how many outcomes are in S7?
A: There are
ng = 26 x 26 x 26 x 10 x 10 x 10 = 17,576, 000

possible outcomes.

Q: Assume each outcome in S is equally likely (e.g., license plate letters/numbers are de-
termined at random). What is the probability a randomly selected plate contains no repeat
letters and no repeat numbers?
A Define the event
A = {no repeat letters/numbers}.

The number of outcomes in A is

na =26 x25x24 x 10 x 9 x 8 =11, 232,000.
Therefore,
ny 11232000

= — ~0.639.

P(A) =4 =
ns 17576000

Permutations: Suppose a random experiment involves arranging distinct objects (e.g.,
people, parts, locations, etc.) in order.

e With n distinct objects, there are
nl=nn—-1)(n—-2)x---x2x1
ways to permute these objects (i.e., to arrange them in a particular order).

e With n distinct objects, there are

n!
pr—
" o (n—r)!

ways to select r objects and then permute these.
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Example 2.8. A personnel director for a corporation has hired 12 new engineers.

Q: How many ways could the engineers be assigned to 12 different offices?
A: There are
121 =12 x 11 x 10 x --- x 2 x 1 = 479,001, 600

ways an assignment could be made.

Q: Suppose the director needs to select 3 engineers to fill distinct positions: team leader,
consultant, and support staff member. How many ways could this be done?

A: There are 191
PP2—=__"" —12x11x10=1320
5T (23 T

ways this selection could be made.

Q: In the last part, suppose there are 6 engineers from USC and 6 from Clemson. What is
the probability a USC graduate is selected as the team leader and the remaining 2 positions
are filled by Clemson graduates?

A: Define the event

A = {USC team leader and Clemson graduates for other 2 positions}.

There are a total of
ng = 1320

ways to select 3 engineers for the distinct positions (ignoring school; this was the last part).
Assuming each of these outcomes is equally likely, then all we have to do is calculate the
number of outcomes in A and use

na
P(A) = —.
(4) =22
We find n4 by using the multiplication rule:
ny = number of ways to select 1 USC graduate = 6
ny = number of ways to select 2 Clemson graduates = Py

The number of outcomes in A is
ng=6x Py =6x30=180.

Therefore,

na 180
P(A) = — = —— = 0.136.
(4) ng 1320

Combinations: Combinations are like permutations except the ordering of the objects
doesn’t matter. With n distinct objects (e.g., people, parts, locations, etc.), there are

()=

PAGE 11
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Q: In Example 2.8, how many ways are there to select 3 engineers from 127
A: Because the order of selection doesn’t matter (i.e., there are no designations of team
leader or anything like that), there are

= = = 220
3 3! 9! 6

(12) 121 12 x11x 10
ways to select 3 engineers from 12.

Example 2.9. A bin of 50 manufactured parts contains 3 defective parts and 47 nondefective
parts. A sample of 6 parts is selected at random and without replacement. That is, each
part can be selected only once, and the sample is a subset of the 50 parts.

Q: What is the probability the sample contains exactly 2 defective parts?
A: Imagine the selection of 6 parts from the bin as a random experiment with outcomes in
S having the form

One possible outcome is

meaning the fourth part selected was defective and the others were not.

How many outcomes are in the sample space? This is a combination question because we
are simply selecting 6 parts from 50 and order doesn’t matter. There are

ng = (560) = 15,890, 700

outcomes in S. How many outcomes are in
A = {sample contains 2 D and 4 ND parts}?

Use the multiplication rule with

3
ny = number of ways to select 2 D from 3 = (2)

4
ne = number of ways to select 4 ND from 47 = (47>

The number of outcomes in A is

na = (2) (447> = 3 x 178365 = 535, 095.

Therefore, assuming each outcome in S is equally likely,

na 535095
P(A)= — = ——— = 0.034.
(4) ng 15890700
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2.3 Axioms of probability and additive rules

Remark: Going forward, we need a formal set of rules (or axioms) which will govern how
we determine probabilities in general. The following axioms are due to Kolmogorov.

Axioms: For any sample space S, assigning a probability P must satisfy
(1) 0 < P(A) <1, for any event A
(2) P(S)=1

(3) If Ay, Ag, ..., A, are pairwise mutually exclusive events, then
i=1 i=1

e The term “pairwise mutually exclusive” means that A; N A; = (), for all i # j.

e Recall the event

U&zmu@umum
=1

means “at least one A; occurs.”

Discussion: The first axiom guarantees that probabilities must be between 0 and 1. Events
with probability 0 can never occur. Events with probability 1 must occur. Both extremes are
rare in real life. The third axiom provides the mathematical basis for intuitive calculations
like in the following example.

Example 2.10. In the game of craps, two fair dice are rolled initially to start the game.
Here is a probability model for the sum of the two faces.

Outcome 2 3 4 5 6 7 8 9 10 1l 12

1 2 3 4 5 6 5 4 3 2 1
P il - 02 2 =2 2 22 2 2 24 2
robability =2 36 35 36 36 36 36 36 36 36 36

Q: What is the probability of rolling a “7” or an “117”
A: The third axiom assures we can add the probabilities, that is,

6 2 8
P(rolling a 7 or 11) = P(rolling a 7) + P(rolling an 11) = 36 + 6= 367 0.222.

This is true because
{rolling a 7} and {rolling an 11}

are mutually exclusive events.
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Complement Rule: The complement of the event A consists of all outcomes not in A.
The complement is denoted by A’. The first two axioms can be used to show

P(A'y=1- P(A).
That is, the probability A does not occur is one minus the probability it does.
Additive Rule: If A and B are two events, then
P(AUB)=P(A)+ P(B)— P(ANB).
Of course, if A and B are mutually exclusive, then P(AN B) =0 and
P(AUB) = P(A) + P(B).

This agrees with Axiom 3.
DeMorgan’s Laws: If A and B are two events, then

(AUB) = AnpB

(AnB) = AUB.
Example 2.11. The probability that train 1 is on time is 0.95. The probability that train
2 is on time is 0.93. The probability that both are on time is 0.90. Define the events

A = {train 1 is on time}

B = {train 2 is on time}.
We are given P(A) = 0.95, P(B) = 0.93, and P(AN B) = 0.90.
Q: What is the probability train 1 is not on time?

P(A) = 1- P(4)
— 1-0.95=0.05,

Q: What is the probability at least one train is on time?

P(AuB) = P(A)+P(B)—-P(ANDB)
0.95+ 0.93 — 0.90 = 0.98.

Q: What is the probability neither train is on time?
A: Note that by DeMorgan’s Law,

{neither train on time} = A'N B = (AU B)".
Therefore, by the complement rule,

P(AUBY = 1-P(AUB)
1—0.98 = 0.02.
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Remark: The additive rule also applies for more than two events. For example,
P(AUBUC)=P(A)+ P(B)+ P(C)
—P(ANB)—-P(ANnC)—P(BNC)+ P(ANBNC)
and
P(AUBUCUD)=P(A)+ P(B)+ P(C)+ P(D)
—P(ANB)—-P(ANC)—-PAND)—-PBNC)—PBND)—P(CND,)
+P(ANBNC)+PANBND)+PANCND)+P(BNCND)
—P(ANBNCND)

for three and four events. The pattern continues, but the formula becomes increasingly
impractical to work with (unless the events are mutually independent).

2.4 Conditional probability and independence

Remark: In many situations, we might want to calculate P(A). However, this probability
might be influenced by another event B. That is, the occurrence of B influences how we
assign probability to A. This motivates conditional probability.

Definition: Let A and B be events in a sample space S with P(B) > 0. The conditional
probability of A, given that B has occurred, is

P(A|B) = P(]f(—;)B).

Similarly,
' P(ANB)
Pol) = TE0E,

provided P(A) > 0.

Example 2.12. In a manufacturing process, 10% of the parts contain surface flaws and
25% of the parts with surface flaws are (functionally) defective parts. However, only 5% of
parts without surface flaws are defective parts.

There are two events of interest here:

D = {part is defective}
F = {part has surface flaws}.
We are given P(F') = 0.10, P(D|F) = 0.25, and P(D|F’) = 0.05. Therefore, how we assign

probability to D depends on whether F' occurs; i.e., it depends on whether the part has
surface flaws (F') or not (F”).

Exercise: What is P(D)? That is, what percentage of parts are defective overall regardless
of surface flaw status?
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Example 2.13. Brazilian scientists have identified a new strain of the HIN1 virus. The ge-
netic sequence of the new strain consists of alterations in the hemagglutinin protein, making
it significantly different than the usual HIN1 strain. Public health officials wish to study the
population of residents in Rio de Janeiro. Suppose that in this population

e the probability of catching the usual strain is 0.10

e the probability of catching the new strain is 0.05

e the probability of catching both strains is 0.01.
Define the events

A = {resident catches usual strain}

B = {resident catches new strain}.
From the information above, we have P(A) = 0.10, P(B) = 0.05, and P(AN B) = 0.01.

Q: Find the probability of catching the usual strain, given that the new strain is caught.

A': Using the definition of conditional probability,

P(AnB) 001
P(B)  0.05

P(A|B) = 0.20.

This means among all residents who have caught the new strain, 20% of them will also catch
the usual strain. Notice how P(A) and P(A|B) are different. That is, the occurrence of B
has changed how we assign probability to A.

Q: Find the probability of catching the new strain, given that at least one strain is caught.
A: If “at least one strain is caught,” this means A U B has occurred. Therefore,

P(BN (AU B)) P(B)
P(B|AUB) = P(AUB) ~ P(A)+PB)-P(ANDB)
0.05

— ~ 0.357.
0.10 + 0.05 — 0.01

This means among all residents who have caught at least one strain, 35.7% of them have
caught the new strain.

Multiplication Rule: If we take the conditional probability definitions

P(ANB) P(AN B)

PUAIB) = =5 P

and P(B|A) =

we see that
P(AnB) = P(A|B)P(B)
P(B|A)P(A).

This is called the multiplication rule (although I'm not sure why). It gives us a way to
calculate P(A N B) when conditional probabilities are available.
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e In general, we cannot determine P(AN B) from P(A) and P(B) alone. We need more
information or we have to make additional assumptions about A and B.

Curiosity: P(A) and P(A|B) are both probabilities for the event A. In the first, we look
at A by itself. In the second, we incorporate knowledge that the event B has occurred.
What does it mean when P(A) = P(A|B)? It means the knowledge gained from learning
B occurred does not influence how we assign probability to the event A. This is the casual
definition of independence.

Definition: When the occurrence or non-occurrence of B has no effect on whether or not
A occurs, and vice-versa, we say the events A and B are independent. Mathematically, we
define A and B to be independent if and only if

P(ANB)= P(A)P(B).
Note that if A and B are independent, then

P(A|B) = P(If(;)B) = P%Z;EB) = P(A)

and
P8y =L f(Z)A) _ L (IB;EZ)(A) — P(B).

Example 2.14. An electrical circuit consists of two components (e.g., resistors, capacitors,
batteries, etc.). The probability the second component functions satisfactorily during its
design life is 0.90. The probability at least one of the components does so is 0.96. The
probability both components do so is 0.75.

Q: Do the two components function independently?
A': Define the events

A = {component 1 functions}

B = {component 2 functions}.
We have P(B) = 0.90, P(AU B) = 0.96, and P(AN B) = 0.75. The additive rule gives
0.96 = P(A) +0.90 — 0.75 = P(A) = 0.81.

However,

0.75 = P(AN B) # P(A)P(B) = 0.81(0.90) = 0.729.

Therefore, the events A and B are not independent. The two components do not function
independently.

Example 2.15. In an engineering system, two components are placed in a series. This
means the system is functional as long as both components are. Each component is functional
with probability 0.95. Define the events

Ay = {component 1 is functional}

Ay = {component 2 is functional}
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so that P(A;) = P(As) = 0.95. Because we need both components to be functional, the
system reliability (i.e., the probability the system is functional) is P(A; N Ay).

e If the components operate independently, then the system reliability is

P(A; N As) = P(A;)P(As) = 0.95(0.95) = 0.9025.

e [f the components do not operate independently; e.g., failure of one component affects
the other, we can not determine the system reliability P(A; N Ag) without additional
knowledge or assumptions.

Remark: The notion of independence extends to more than two events. Mutual indepen-
dence means the probability of all events in any sub-collection of A;, As, ..., A, occurring
equals the product of the probabilities of the events in the sub-collection. For example, if
Ay, Ay, and A3 are mutually independent, then

P(A1NAs) = P(A)P(A3)
P(AyNAs) = P(Ay)P(As)

considering all event sub-collections of size two. It must also be true that
P(AiNAsNA;) = P(A)P(As)P(A;).

Remark: Many random experiments can be envisioned as consisting of a sequence of n
“trials” that are viewed as independent (e.g., flipping a coin 10 times). If A; denotes the
event associated with the ¢th trial, and the trials are mutually independent, then

() - Tl

Example 2.16. Samples of 30 parts from a metal punching process are selected every hour.
Each part is tested. If a part does not conform to specifications, it is sent to another location
where it is repaired (or “reworked”).

Define the events
A; = {ith part requires rework}, ¢=1,2,...;30.
Assume the 30 events Aj, A,, ..., A3y are mutually independent and P(A4;) = p.

Q: Under these assumptions, what is the probability at least one part requires rework?
A: Define the event

30
A = {at least one part requires rework} = U A;.
i=1
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The complement of A is
30
A" = {no part requires rework} = ﬂ Al
i=1

by DeMorgan’s Law. Because Aj, A, ..., A3y are mutually independent, the complements
Al AL, ALy are also mutually independent. Therefore,

30 30
= () =TTty - -
i=1 i=1
Finally,
P(A)=1—PA)=1-(1-p)*.
For example, if p = 0.01, that is, 1% of all parts require rework, then

1 —(0.99)* ~ 0.260.

Therefore, rework will be required for at least one part 26% of the time when samples of size
30 are tested.

2.5 Law of Total Probability and Bayes’ Rule

Law of Total Probability: Suppose A and B are events in a sample space S. We can
express A as the union of two mutually exclusive events

A=(ANB)U(ANB').
Therefore,

P(A) = P(ANnB)+P(ANnB)
= P(A|B)P(B) + P(A|B")P(B).
Remark: The Law of Total Probability gives us a way to calculate P(A) by relying instead
on the conditional probabilities P(A|B) and P(A|B’) and the probability of a related event

B. Specifically, P(A) is a linear combination of the conditional probabilities P(A|B) and
P(A|B'). Note that the “weights” in the linear combination, P(B) and P(B’), add to 1.

Example 2.17. An insurance company classifies drivers as “accident-prone” and “non-
accident-prone.” The probability an accident-prone driver has an accident is 0.4. The prob-
ability a non-accident-prone driver has an accident is 0.2. The population is 30 percent
accident-prone. Define the events

A = {policy holder has an accident}
B = {policy holder is accident-prone}.

We are given P(A|B) = 0.4, P(A|B’) = 0.2, and P(B) = 0.3.
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Q: What is the probability a policy holder has an accident?
A: We want P(A), which can be found by using the LOTP:

P(A) = P(A|B)P(B) + P(A|B")P(B') = 0.4(0.3) + 0.2(0.7) = 0.26.
Therefore, 26% of the company’s policy holders will have an accident.

Q: If a policy holder has an accident, what is the probability s/he was “accident-prone?”
A: We want P(B|A), which can be calculated as

P(ANB)  P(AB)P(B) _ 0.4(0.3)

P(BlA4) = P(A)  — P(A) 026

~ (0.462.

Therefore, among all policy holders who had an accident, 46.2% of them are accident-prone.

Discussion: In the last part, note that if we write

P(A|B)P(B) _ P(A|B)P(B)

P(B|A) = P(A)  P(A|B)P(B) + P(A|B"P(B)’

we obtain Bayes’ Rule for two events.

Example 2.18. Diagnostic testing. A lab test is 95% effective at detecting a disease when
it is present. It is 99% effective at declaring a subject negative when the subject is truly
negative for the disease. Suppose 8% of the population has the disease.

Define the events

D = {disease is present}

A = {test is positive}.
We are given the following information:

P(A|D) = 0.95 (“sensitivity”)
P(A'|D") = 0.99 (“specificity”)
P(D) = 0.08 (“prevalence”).

Q: What is the probability a randomly selected subject will test positively?
A: We want P(A). By the LOTP,

P(A) = P(A|D)P(D) + P(A|D")P(D") = 0.95(0.08) + 0.01(0.92) ~ 0.085.
Therefore, about 8.5% of the population will produce a positive test result.

Q: What is the probability a subject has the disease if his test is positive?
A: We want P(D|A). By Bayes’ Rule,

P(A|D)P(D) B 0.95(0.08)
(AID)P(D) + P(A|D)P(D’) — 0.95(0.08) + 0.01(0.92)

P(D|A) = I ~ 0.892.

Therefore, among all subjects testing positively, about 89.2% of the subjects have the disease.
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Remark: In general, Bayes’ Rule allows us to update probabilities on the basis of observed
information. In Example 2.18, the “observed information” we get to see is the test result.

Prior probability Test result Posterior probability
P(D) =0.08 — A — P(D|A) =~ 0.892
P(D) = 0.08 — A —> P(D|A’) =~ 0.004

2.6 Introduction to random variables

Terminology: A random variable is a variable whose value is determined by chance.

e By convention, we denote random variables by upper case letters towards the end of
the alphabet; e.g., W, X, Y, Z, etc. The authors of the textbook for this course
(Montgomery and Runger, 2018) favor the use of X.

Motivation: In Example 2.16, we considered samples of 30 parts from a metal punching
process. Conceptualizing this as random experiment, the sample space can be written as

S ={(0,0,0,...,0),(1,0,0, ...,0),(0,1,0,...,0), ..., (1,1,1, ..., 1)},

where “1” denotes a part that requires rework and “0” denotes a part that does not. There

are
ng = 230 = 1,073,741, 824

outcomes in this sample space! Examples like this illustrate why working with random
variables is easier. After all, the line technician or quality control engineer is probably only
interested in how many of the parts will require rework. If we let

X = number of parts requiring rework (out of 30),

then we no longer have to work with an unwieldy sample space with over a billion outcomes.
We can instead work with events of the form

{X ==z},
and designate probabilities for P(X = z), for x = 0, 1,2, ...,30. This is much easier.
Terminology: Random variables generally break down into one of two types.

e If a random variable X can have only a finite (or countable) number of values, we say
it is discrete.

— For example, the random variable
X = number of parts requiring rework (out of 30)

is discrete because there are 31 possible values z = 0, 1,2, ..., 30.
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o [f it makes more sense that X has values in an interval of numbers, we say X is
continuous.

— Measurements like part diameters (cm), temperature (deg C), energy expended
(kcal), time (days, years, etc.), and distance (miles) are all best regarded as
continuous random variables.

Terminology: The set of all values a random variable X can have is called its support.

Example 2.19. Classify the following random variables as discrete or continuous and specify
the support of each:

= number of unbroken eggs in a randomly selected carton (dozen)
= pH of an aqueous solution
length of time between accidents at a factory

= whether or not you pass this class

N < =<
I

= number of aircraft arriving tomorrow at CAE.

e The random variable V is discrete. It can have values in

{0,1,2,...,12}.

e The random variable W is continuous. It can have values in
R={-00<w< o0}

With most solutions, it is more likely that W is not negative (although this is possible)
and not larger than, say, 15 (a very reasonable upper bound).

e The random variable X is continuous. It can have values in
R* = {x > 0}.

The key point here is that a time cannot be negative. In theory, it is possible that X
can be very large.

e The random variable Y is discrete. It can have values in

{07 1}7

where I have arbitrarily labeled “1” for passing and “0” for failing. Random variables
that can assume exactly two values (e.g., 0, 1) are binary.

e The random variable Z is discrete. It can have values in
N=1{0,1,2,3,..., }.

I have allowed for the possibility of a very large number of aircraft arriving.

PAGE 22



CHAPTER 3 STAT 509

3 Discrete Distributions

3.1 Probability mass functions
Recall: A random variable X is discrete if it can have a finite or countable number of
values.

Terminology: The probability mass function (pmf) of a discrete random variable X
tells us two things:

1. the values X can have

2. a probability px(z) = P(X = z) for each value of x.

The pmf of X,
px(z) = P(X = 1),

describes the distribution of X. It tells us which values of x are possible (the support of
X) and how to assign probabilities to these values.

Example 3.1. An automobile paint factory has 5 filling lines (lines where cans are filled
with paint) which are in continuous operation. During a 24-hour time period, mechanics
record

X = the number of lines which require maintenance.

Here is the distribution of X, described by its pmf:

x 0 1 2 3 4 )
px(z) | 0.60 0.10 0.16 0.05 0.06 0.03

The support of X is
{0,1,2,3,4,5}.

Also,

e the probabilities px(x) = P(X = x) are all between 0 and 1

e the probabilities add to 1.
These two things must be true for any pmf (otherwise, we say the pmf is not valid).
Q: What is the probability no lines require maintenance during a 24-hour time period?

P(X =0) = 0.60.

PAGE 23



CHAPTER 3 STAT 509

0.6
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px(X)
0.2 0.3 0.4 0.5
|

0.1

0.0

Figure 3.1: Probability mass function of X in Example 3.1.

Q: Upper management is contacted whenever 3 or more lines require maintenance during a
24-hour time period. What percentage of days will this occur?

P(X>3) = P(X=3)+P(X=4)+P(X=5)
= 0.05+0.06 +0.03 = 0.14,

Upper management will be contacted on 14% of the days.

Terminology: The cumulative distribution function (cdf) of a discrete random variable
X gives probabilities of the form

Fx(z) = P(X <)

for any real number x.

e When X is a discrete random variable, the cdf Fx(z) is a step function.

e The range of Fy(x) is

This makes sense because Fx(x) is a probability.
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0.2

0.1

0.0

0.4
|

0.0

Figure 3.2: Left: Probability mass function (pmf) of X in Example 3.1. Right: Cumulative

distribution function (cdf) of X.

Note: A discrete random variable’s cdf cumulates (adds up) probability as we move from
left to right on the pmf. The cdf of X in Example 3.1, shown above, can be written as

Fx(I) =

(

0,
0.60,
0.70,
0.86,
0.91,
0.97,

L

r <0
0<zxr<«l
1<x<?2
2<xr <3
3<zr<4
4<xr<bh

T > 5.

Example 3.1 (continued). Answer the following questions by using both the pmf and cdf

in Figure 3.2.

Q: What is the probability there are at most 2 lines that require maintenance?

A: We want P(X < 2).

PMF:

P(X<2)=P(X=0)+P(X =1)+P(X =2)=0.60+0.10 + 0.16 = 0.86

CDF:

P(X <2) = Fx(2) = 0.86.
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Q: What is the probability there are at least 4 lines that require maintenance?
A: We want P(X > 4).

PMF:

P(X>4)=P(X=4)+P(X =5)=0.06+0.03=0.09
CDF:

P(X>4)=1-P(X <3)=1-Fx(3)=1-0.91 =0.09.

Q: What is the probability there is exactly 1 line that requires maintenance?
A: We want P(X =1).

PMEF:
P(X =1)=0.10

CDF:

P(X=1)=P(X <1)— P(X <0) = Fx(1) — Fx(0) = 0.70 — 0.60 = 0.10.

3.2 Mean and variance

Terminology: Suppose X is a discrete random variable with pmf px(z). The expected
value of X is

The expected value of a discrete random variable X is a weighted average of the possible
values of X. Each value z is weighted by its probability px(z). In statistical applications,
i = E(X) is called the mean or population mean.

Example 3.1 (continued). We examined the distribution of X, the number of filling lines
which require maintenance during a 24-hour period. The probability mass function (pmf)
of X is

T 0 1 2 3 4 5
px(z) | 0.60 0.10 0.16 0.05 0.06 0.03

The expected value of X is
EX) = prx(a:)
= 0(0.60) 4+ 1(0.10) + 2(0.16) + 3(0.05) + 4(0.06) + 5(0.03) = 0.96.
Interpretations:

e FE(X) is the “center of gravity” of a discrete random variable’s pmf. It’s the location
on the horizontal axis where px(z) would balance if it were made of solid material.
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px(X)
0.2 0.3 0.4 0.5
|

0.1

0.0

Figure 3.3: Probability mass function of X in Example 3.1. The expected value F(X) = 0.96
is shown by a solid circle.

e FE(X)is a “long-run average.” That is, if we were to observe the value of X for many
24-hour periods in Example 3.1, the average of these observations should be “close”
to E(X). The more observations there are, the closer this average will be to E(X).
For example, the R code below simulates 365 measurements of X in Example 3.1 and
averages them.

> options(digits=3) # control number of significant digits presented
> n = 365

> x = c(0,1,2,3,4,5)

> prob = ¢(0.60,0.10,0.16,0.05,0.06,0.03)

> lines = sample(x,n,replace=TRUE, prob=prob)

> mean(lines)

[1] 0.934

Result: Suppose X is a discrete random variable with pmf py(z) and ¢ is any function.
Then ¢(X) is also a random variable and its expectation (mean) is

Elg(X)] =) g(@)px(@).

all x
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Linearity rules:
(a) E(c) = ¢, for any constant ¢
(b) Elcg(X)] = cE[g(X)], for any constant ¢
(c) The expectation of the sum is the sum of the expectations; i.e.,

Elg1(X) + g2(X) + - + gx(X)] = E[g1(X)] + Elg2(X)] + - - + Elgu(X)].

We say the expectation F(-) is a linear operator, that is, it preserves the operations of
addition and scalar multiplication.

Example 3.2. In a one-hour period, the number of gallons of toxic waste produced at a
local plant, say X, has the following pmf:

€T 0 1 2 3
px(z) 02 0.3 03 0.2

This pmf is shown in Figure 3.4 (next page).
Q: What is E(X)?

E(X) = apx(z) =0(0.2) + 1(0.3) + 2(0.3) + 3(0.2) = 1.5.

Therefore, we would expect 1.5 gallons of toxic waste to be produced per hour.

Q: Disposing toxic waste requires careful handling and adherence to regulations to protect
human health and the environment. The cost C' (in $100s) to dispose X gallons of waste
per hour is a quadratic function of X, specifically,

C=3—-14X +4.6X2.

What is the expected cost of disposal E(C') in a one-hour period?
A: We can use the linearity rules stated above. Let’s find E(X?) first:

E(X?) =Y a’px(x) = 0°(0.2) + 17(0.3) + 2°(0.3) + 3%(0.2) = 3.3.

Therefore,

E(C)=FE(B3—-14X +46X?%) = 3—14E(X)+4.6E(X?)
= 3—1.4(1.5) +4.6(3.3) = 16.08.

The expected hourly cost of toxic waste disposal is $1,608.00.
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px(X)
015 020 025 030 035
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Figure 3.4: Probability mass function of X in Example 3.2. The expected value E(X) = 1.5
is shown by a solid circle.

Terminology: Suppose X is a discrete random variable with pmf px(z) and mean y =
E(X). The variance of X is

The standard deviation of X is the positive square root of the variance:

o =Vo?=/V(X).

Example 3.2 (continued). Recall the pmf for the number of gallons of toxic waste produced
(per hour) is

T 0 1 2 3
px(z) 02 03 0.3 0.2

Q: Find V(X) and the standard deviation of X.
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Using the definition of the variance, we have

V(X) = ) (& —p)fpx(a)

all

= (0—-1.5)2(0.2) + (1 —1.5)%(0.3) + (2 — 1.5)%(0.3) + (3 — 1.5)*(0.2) = 1.05.

The standard deviation of X is

o =+/V(X)=V1.05~1.025.
Interpreting the variance and standard deviation:

1. Whereas E(X) measures the “center” of a distribution, the variance V(X) measures
the “spread,” that is, how spread out the values of X are about the mean.

2. The larger V(X)) is, the more spread (variability) in the distribution of X.

3. The variance V(X) > 0. The only time V(X) = 0 is when X has a degenerate
distribution; i.e., all the probability mass is at one point.

4. V(X) is measured in (units)? and o is measured in original units.

5. From the definition,
V(X) = E[(X — p)?]

is the expected squared distance between X and the mean. The standard deviation o
is (roughly) the expected distance between X and the mean.

Linear functions: Suppose X is a discrete random variable with pmf px(z) and mean
w = E(X). Suppose a and b are constants. The mean and variance of the linear function
aX + b are

E@X +b) = aB(X)+b
V(aX +b) = a*V(X).

The expectation result follows from the linearity properties associated with E(-). The vari-
ance result is new.

e Taking a = 0, we see that V' (b) = 0 for any constant b. This makes sense—the variance
is a measure of variability for a random variable; a constant does not vary. This also
means that additive shifts of b (to the left or right) do not affect the spread in the
distribution of X.

e Taking b = 0, we see that V(aX) = a*V(X). Multiplicative constants increase the
variance when |a| > 1 and decrease the variance when 0 < |a| < 1.
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Example 3.3. Patient responses to a generic drug to control pain are scored on 5-point
scale (1 = lowest pain level; 5 = highest pain level). In a certain population of patients, the
pmf of the response X is given by

x 1 2 3 4 5
px(z) [ 0.38 027 0.18 0.11 0.06

This pmf is shown in Figure 3.5 (next page, left).

Q: Find the expected value and variance of X.
A: The expected value is

E(X) = Y apx(z)
= 1(0.38) 4 2(0.27) + 3(0.18) + 4(0.11) + 5(0.06) = 2.2.

In this application, it would be appropriate to call E(X) = pu = 2.2 the population mean.
It is the mean pain response for all patients in the population under study.

The variance is

V(X) = ) (- p)fpx()

— ?193_ 2.2)%(0.38) + (2 — 2.2)%(0.27) + (3 — 2.2)*(0.18)
+ (4 —2.2)%(0.11) + (5 — 2.2)%(0.06) = 1.5.

Similarly, it would be appropriate to call V(X ) = 02 = 1.5 the population variance. It is
the variance associated with the pain responses for all patients in the population.

Q: Find the mean and variance of Y = 2X — 1.
A: The mean of Y =2X — 1 is

E2X —-1)=2E(X)—-1=2(22)—1=34.
The variance of Y =2X — 1 is
V(2X —1) =4V (X) =4(1.5) = 6.

These are the mean and variance associated with the pmf of ¥ = 2X — 1:

y 1 3 5 7 9
py(y) | 0.38 027 0.18 0.11 0.06

This pmf is shown in Figure 3.5 (next page, right).
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Figure 3.5: Left: Probability mass function of X in Example 3.3. Right: Probability mass
function of Y = 2X — 1. The means F(X) = 2.2 and E(Y) = 3.4 are shown by solid circles.

Variance computing formula: Suppose X is a random variable (discrete or continuous)
with mean g = F(X). An alternative way to find V(X)) is by using

V(X) = E(X?) - [BE(X)]".
This formula is easy to remember and can make calculations easier. It also reminds us that
E(X?) # [E(X)]".

Some students are tempted to write F(X?) = [F(X)]?, but this is not true! Provided X
does not have a degenerate distribution (where all the probability is at one value), note that

V(X) > 0= E(X?) > [E(X)]>

Example 3.3 (continued). For the pmf

T 1 2 3 4 )
px(z) | 0.38 0.27 0.18 0.11 0.06

we have

B(X?) = Z *px (z)

all

= 1%(0.38) + 2%(0.27) + 3%(0.18) + 4%(0.11) + 5%(0.06) = 6.34.
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Using the variance computing formula,

V(X) = B(X?) - [EX))
= 6.34—(2.2)> = 1.5.

This is the same answer we got for V(X)) when we used the definition of variance.

3.3 Binomial distribution

Bernoulli trials: Many random experiments can be envisioned as consisting of a sequence
of “trials,” where

1. each trial results in a “success” or a “failure” (only 2 outcomes are possible)

2. the trials are independent (the result on one trial is not affected by the results from
other trials)

3. the probability of success p is the same on every trial.

Examples:

e When circuit boards used in the manufacture of laptops are tested, one percent of the
boards are found to be defective.

— circuit board = “trial”
— defective board is observed = “success”
- p=0.01

e Ninety-eight percent of all air traffic radar signals are correctly interpreted the first
time they are transmitted.

— radar signal = “trial”
— signal is correctly interpreted = “success”
- p=0.98

e Albino rats used to study the hormonal regulation of a metabolic pathway are injected
with a drug that inhibits body synthesis of protein. Twenty percent of all rats will die
before the study is complete.

— rat = “trial”
— dies before study is over = “success”
- p=0.2
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e During her WNBA tenure, Caitlyn Clark’s free throw percentage is 88.7%.

— free throw = “trial”
— made free throw = “success”
— p=0.887

Definition: A binomial distribution arises when we observe a fixed number of Bernoulli
trials:

n = number of trials

X = number of successes (out of n).

If the Bernoulli trial assumptions hold, then the probability mass function (pmf) of X is
given by the formula

(n)pm“' _p>n_x7 xr = 07 ]-7 27 w1
X

0, otherwise.

px(z) =

We write X ~ b(n, p), where p is the probability of success on any one trial.

Example 3.4. In an agricultural study, 40 percent of all plots respond to a certain treatment.
In this context, we interpret

e plot = “trial”
e plot responds to treatment = “success”
e p=04

Four plots are observed. If the Bernoulli trial assumptions hold (independent plots, same
response probability for each plot), then

X = number of plots responding to treatment ~ b(n = 4,p = 0.4).

This pmf is shown in Figure 3.6 (next page). Here are all the pmf calculations:

4

P(X=0) = <o) (0.4)°(0.6)* = 0.1296
4

PX=1) = <1> — 0.3456
4

P(X =2) = <2> = 0.3456
4

P(X =3) = <3> — 0.1536

P(X =4) = ( ) = 0.0256.
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Figure 3.6: Probability mass function of X ~ b(4,0.4) in Example 3.4. The expected value
E(X) = 1.6 is shown by a solid circle.

Putting these in tabular form (like before), we have

T 0 1 2 3 4
px(x) | 0.1296 0.3456 0.3456 0.1536 0.0256

MEAN/VARIANCE: If X ~ b(n,p), then

(X) = np
(X) = np(l-p).

=

Example 3.4 (continued). The expected number of plots which respond to treatment is
E(X)=4(0.4) = 1.6 plots.

The variance is
V(X) = 4(0.4)(0.6) = 0.96 (plots)>.

The standard deviation is
o =v0.96 = 0.98 plots.
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Figure 3.7: Probability mass function of X ~ 5(30,0.05) in Example 3.5.

Example 3.5. A computer’s power supply unit (PSU) is hardware that converts high-
voltage alternating current (from a wall outlet) into lower-voltage direct current power which
is needed by a computer’s components (e.g., CPU, etc.). A manufacturer claims “no more
than 5 percent” of its power supply units need servicing during their warranty period. We
can interpret

e PSU = “trial”
e PSU needs service during warranty period = “success”

e p =0.05 (in fact, the manufacturer claims p is no larger than 0.05).

Technicians access a sample of 30 units and simulate their usage during the warranty pe-
riod. If the Bernoulli trial assumptions hold (independent units, same probability of needing
service for each unit), then

X = number of PSUs needing service during warranty period ~ b(n = 30,p = 0.05).

This pmf is shown in Figure 3.7 (above).
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Q: Among the 30 units tested, what is the probability the technicians find 5 or more PSUs
requiring service during the warranty period?
A: We want P(X > 5). We could calculate

P(X=5)+P(X=6)+P(X =7+ -+ P(X =29) + P(X = 30),

but this would require using the binomial pmf formula 26 times and adding up the results.
It is easier to write

P(X>5) = 1-P(X <4)
— 1-P(X=0)-P(X=1)-P(X =2)— P(X =3) — P(X = 4)

which requires using the binomial pmf formula only 5 times. Note that

P(X=0) = <30) (0.05)°(0.95)*° ~ 0.2146

0
PX=1) = <310) (0.05)'(0.95)* ~ 0.3389
P(X=2) = (320) (0.05)%(0.95)*® ~ 0.2586
P(X =3) = (330) (0.05)%(0.95)*" =~ 0.1270
P(X =4) = (340) (0.05)%(0.95)%° =~ 0.0451.

Therefore,
P(X >5)~1-0.2146 — 0.3389 — 0.2586 — 0.1270 — 0.0451 = 0.0158.

Under the b(30, 0.05) model, it is unlikely the technicians would find 5 or more PSUs requiring
service during the warranty period. This would occur only in 1.58% of the samples of size
30 tested.

Discussion: What if the technicians did observe 5 PSUs which required service during the
warranty period? What might be true?

BINOMIAL R CODE: Suppose X ~ b(n, p).

px() = P(X =) Fx(z) = P(X < )
dbinom(x,n,p) pbinom(x,n,p)

> options(digits=4)

> dbinom(2,30,0.05) # P(X=2)

[1] 0.2586

> 1-pbinom(4,30,0.05) # 1-P(X<=4)
[1] 0.01564
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Note: Another way in R to calculate P(X > 5) in this example would be to use the code

> sum(dbinom(5:30,30,0.05))
[1] 0.01564

The dbinom(5:30,30,0.05) command creates a vector containing the binomial pmf proba-
bilities px(5), px(6), ..., px(30). The sum command adds them.

3.4 Geometric and negative binomial distributions

Note: Both the geometric and negative binomial distributions arise from observing Bernoulli
trials.

Definition: A geometric distribution arises when we continue to observe Bernoulli trials
until the first success occurs. Specifically, define

X = number of trials to observe the 1st success.
If the Bernoulli trial assumptions hold, then the probability mass function (pmf) of X is

given by the formula
(1—p)*tp, 2=1,2,3, ..,
px(z) =

0, otherwise.

We write X ~ geom(p), where p is the probability of success on any one trial.

Example 3.6. An EPA engineer is tasked with testing water specimens from lakes in
northeast Georgia. In this region, each specimen has a 20 percent chance of containing a
particular organic pollutant. We interpret

e specimen = “trial”
e specimen contains the pollutant = “success”
e p=20.2

Define

X = number of specimens tested to find the first one containing the pollutant.

If the Bernoulli trial assumptions hold (independent specimens, each specimen has the same
probability of containing the pollutant), then X ~ geom(p = 0.2). This pmf is shown in
Figure 3.8 (next page).

Q: What is the probability the engineer finds the first polluted specimen on the 5th specimen
tested?
A: We want

P(X =5) = (0.8)*(0.2) ~ 0.082.
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Figure 3.8: Probability mass function of X ~ geom(p = 0.2) in Example 3.6.

Q: What is the probability the first polluted specimen is found before the 4th specimen is
tested?
A: We want

P(X<3) = P(X=1)+P(X =2)+ P(X =3)
= (0.8)°(0.2) + (0.8)'(0.2) + (0.8)2(0.2) = 0.488.

GEOMETRIC R CODE: Suppose X ~ geom(p).

px(z) =P(X =2) Fx(z)=P(X <z
dgeom(x-1,p) pgeom(x-1,p)

> options(digits=3)

> dgeom(5-1,0.2) # P(X=5)
[1] 0.0819

> pgeom(3-1,0.2) # P(X<=3)
[1] 0.488

PAGE 39



CHAPTER 3 STAT 509

Definition: A negative binomial distribution arises when we continue to observe Bernoulli
trials until the rth success occurs. Specifically, define

X = number of trials to observe the rth success.

If the Bernoulli trial assumptions hold, then the probability mass function (pmf) of X is
given by the formula

-1
(x )(1—p)m”pr, r=rr+1r+2, ..,

px(z) = r—1

0, otherwise.

We write X ~ nib(r, p), where p is the probability of success on any one trial.

Note: Some authors call » the waiting parameter in the distribution, because we are
“waiting” to observe the rth success. Of course, if » = 1, then the negative binomial pmf
reduces to the geometric pmf.

Example 3.7. At an automotive paint factory, 25 percent of all batches sent to the lab for
chemical analysis do not conform to specifications. This might occur for batches that were
not prepared properly in the mixing and/or grinding stages. In this situation, we interpret

e batch = “trial”
e batch does not conform = “success”
o p=0.25

Q: What is the probability the 2nd nonconforming batch is found on the 6th batch tested?
A: We are “waiting” until we find the 2nd nonconforming batch (r = 2). If the Bernoulli
trial assumptions hold (independent batches, same probability of nonconforming for each

batch), then

X = the number of batches tested to find the second nonconforming
~ nib(r =2,p = 0.25).
This pmf is shown in Figure 3.9 (next page).

We want .
P(X =6) = (1) (0.75)%(0.25) ~ 0.099.

Q: What is the probability we need to observe 20 or more batches to find the 2nd noncon-
forming batch?
A: We want

P(X>20) = 1-P
= 1-P

= 1- G) (0.75)°(0.25)% — G) (0.75)1(0.25)% — .. — (118> (0.75)17(0.25)2 ~ 0.031.

there are 18 terms here

19)

(X
(X 2) - P(X =3)— - — P(X =19)
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Figure 3.9: Probability mass function of X ~ nib(2,0.25) in Example 3.7.

NEGATIVE BINOMIAL R CODE: Suppose X ~ nib(r, p).

px(z)=P(X =2) Fx(zr)=PX <x)
dnbinom(x-r,r,p) pnbinom(x-r,r,p)

> dnbinom(6-2,2,0.25) # P(X=6)

[1] 0.0989

> 1-pnbinom(19-2,2,0.25) # 1-P(X<=19)
[1] 0.031

MEAN/VARIANCE: If X ~ nib(r,p), then
EX) =

3

Letting 7 = 1 in the formulas above gives E(X) and V(X)) for X ~ geom(p).
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3.5 Hypergeometric distribution

Setting: Consider a population of NV objects and suppose each object belongs to one of two
classes: Class 1 or Class 2. For example, the objects might be people (infected/not), parts
(defective/not), plots of land (respond to treatment/not), etc. We have

N = total number of objects
K = number of objects in Class 1
N — K = number of objects in Class 2.

A sample of n objects is taken from the population at random and without replacement
(after an object is selected, it is not replaced).

Definition: In the setting above, a hypergeometric distribution arises when we observe
X = number of Class 1 objects in the sample (out of n).

The probability mass function (pmf) of X is given by the formula

()(r)
* L sr<Kandn—-z<N-K

px(z) = <JX ) ’

0, otherwise.

\

We write X ~ hyper(N,n, K), where N is the population size, n is the sample size, and K
is the number of Class 1 objects in the population.

Discussion: The motivation for the hypergeometric distribution should remind us of the
underlying framework for the binomial; i.e., we record the number of Class 1 objects (“suc-
cesses”) out of n (“trials”). The difference here is that

e the population size N is finite

e sampling is done without replacement.

To understand further, suppose

p = — = proportion of Class 1 objects in the population.

N

Because sampling from the population is done without replacement, the value of p changes
from trial to trial. This violates the Bernoulli trial assumptions, so technically the binomial
model does not apply. However, if the population size N is “large,” the hyper(N,n, K)
distribution and the b(n,p = K/N) distribution should be very close to each other even
when one samples without replacement. Of course, if one samples from the population with
replacement, then p = K /N remains fixed and hence the binomial model applies regardless
of how large N is.
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Figure 3.10: Probability mass function of X ~ hyper(100,5,10) in Example 3.8. The ex-
pected value E(X) = 0.5 is shown by a solid circle.

Example 3.8. A supplier ships parts to a company in lots of 100 parts. The company has
an acceptance sampling plan which adopts the following rule:

“....sample 5 parts at random and without replacement. If there are no defectives
in the sample, accept the entire lot; otherwise, reject the entire lot.”

Suppose a lot contains 10 defective parts and 90 non-defective parts (this information would
usually not be known to the company). Define

X = number of defective parts in the sample (out of 5)

so that X ~ hyper(N = 100,n = 5, K = 10). This pmf is shown in Figure 3.10 (above).

Q: Following the rule above, what is the probability the company accepts the lot?
A: We want P(X = 0). The lot will be accepted only when there are no defectives in the

sample.
(10) (90)
P(X =0) = % ~ 0.584.
(%)
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Q: What is the probability there are at most 2 defectives in the sample?

P(X<2) = P(X=0)+P(X=1)+P(X =2)
10\ /90 10\ /90 10\ /90
0.6 60...

HYPERGEOMETRIC R CODE: Suppose X ~ hyper(N,n, K).

px(x)=P(X =2) Fx(z)=PX <ux)
dhyper(x,K,N-K,n) phyper(x,K,N-K,n)

> options(digits=3)

> dhyper(0,10,100-10,5) # P(X=0)
[1] 0.584

> phyper(2,10,100-10,5) # P(X<=2)
[1] 0.993

MEAN /VARIANCE: If X ~ hyper(N,n, K), then
K
BX) = n(=
(X) "(N)

= o(5)(-5) G=2)

Note that these formulas are similar to F(X) = np and V(X) = np(1 —p) when X ~ b(n, p)
and p = K/N is the proportion of Class 1 objects in the population. The extra term in the
variance formula is called the finite population correction factor (it adjusts for the fact
one is sampling from a finite population—not one which is regarded to be infinite in size).

Example 3.8 (continued). The expected number of defective parts sampled is

1
E(X)=5 (%) = 0.5 parts.

V@3:5G%0<1—%%>(%)zomﬁ@mmf

The standard deviation is

The variance is

o =v0.432 ~ 0.657 parts.
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3.6 Poisson distribution

Relevance: The Poisson distribution is the most common probability distribution when
modeling counts such as

the number of customers entering a post office per hour

the number of insurance claims received per day

the number of machine breakdowns per month

the number of severe weather events per year

the number of raw material defects per square foot

the number of airborne aerosol particles per cubic inch.

Definition: A Poisson distribution arises when we are counting the number of “occur-
rences” over a unit interval of time (e.g., hour, day, month, year etc.) or a unit region of space
(e.g., square foot, cubic inch, etc.). These occurrences must obey the following postulates:

P1. The number of occurrences in non-overlapping intervals of time (or regions of space)
are independent.

P2. The probability of an occurrence is proportional to the length of the interval of time
(or area/volume of the region of space).

P3. The probability of 2 or more occurrences in a sufficiently small interval of time (or
region of space) is zero.

Define
X = number of occurrences in a unit interval of time (or region of space).

If the Poisson postulate assumptions hold, then the probability mass function (pmf) of X is
given by the formula

Ae™A
, v=0,1,2,...
px(z) = z!
0, otherwise.

We write X ~ Poisson(A), where A is the mean number of occurrences per unit interval of
time or region of space.

MEAN/VARIANCE: If X ~ Poisson(\), then

E(X) = A
V(X) = A\

This is a unique feature of the Poisson distribution—its mean and variance are equal.
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Figure 3.11: Probability mass function of X ~ Poisson(1.5) in Example 3.9. The expected
value F(X) = 1.5 is shown by a solid circle.

Example 3.9. In a certain region in the northeast US, the number of severe weather events
per year X is assumed to have a Poisson distribution with mean A = 1.5. The pmf of X is
shown in Figure 3.11 (above).

Q: What is the probability there are exactly 2 severe weather events in a given year?

(1.5)%15

P(X =2) = 20

~ 0.251.

Q: What is the probability there are more than 3 severe weather events in a given year?

A: We want P(X > 4).

P(X>4) = 1-P(X<3)
= 1-P(X=0)-P(X=1)—P(X=2)— P(X =3)
(1.5)%715  (1L5)le 15 (1.5)%71%  (1.5)3¢715

T R TR TR
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POISSON R CODE: Suppose X ~ Poisson(\).

px(z) =P(X =2) Fx(z)=P(X <z
dpois(x,\) ppois(x,\)

> options(digits=3)

> dpois(2,1.5) # P(X=2)

[1] 0.251

> 1-ppois(3,1.5) # 1-P(X<=3)
[1] 0.0656

Example 3.9 (continued). A local company in this region buys an insurance policy in
the event severe weather shuts down business. The policy pays nothing for the first severe
weather event of the year but pays $25,000 for each one thereafter, until the end of the year.

Q: Calculate the expected amount paid to the company under this policy during a one-year
period.

A: First note that if X = 0 or X = 1, then the company receives nothing according to the
policy. It is only when there are 2 or more severe weather events does a payout occur, and
this payout is $25,000 for each severe weather event. Therefore, the payout when viewed as

a function of X is
0, X=0,1
9(X) = { 25000(X — 1), X =2,3,4, ...

and we want to calculate E[g(X)]. From the definition of expectation, we have

Blx)] = 3o
=0
-0 %O!e_mw x %+225000(x_1)%
— 25000 g(x _ 1)(1-52#1'5
=0
Note that
S -y -1 B 1= 15-1- 05
= !
Therefore,

E[g(X)] = 25000(0.5 — 0 + e %) a2 18078.25.
The expected payout to the company during a one-year period is $18078.25.

PAGE 47



CHAPTER 4 STAT 509

4 Continuous Distributions

4.1 Probability density functions

Recall: A random variable X is continuous if, at least in theory, it can have any value in
an interval of numbers. For example,

e X = pH of an aqueous solution — R = {—00 < x < o0}

e X = length of time (days) between accidents at a factory — RT = {z > 0}

e X = proportion of parts which require rework — [0,1] = {0 <z <1}

e X = current (mA) measured in a thin copper wire — [4.9,5.1] = {4.9 < x < 5.1}

e X = diameter (mm) of a hole drilled in sheet metal — (12.5,00) = {z > 12.5}.

Important: Assigning probabilities to events with continuous random variables is different
than in the discrete case. We do not assign probability to specific values like = 2 as we
might in discrete models. Instead, we assign probabilities to events which are intervals like
1 <z < 3, acknowledging that X can have any value between 1 and 3.

Terminology: The probability density function (pdf) of a continuous random variable
X is a function fx(z) which has the following characteristics:

1. fx(x) >0 — fx(z) is nonnegative.

2. the area under any pdf is equal to 1, that is,
/ fx(z)dx = 1.
Result: If X is a continuous random variable with pdf fx(z), then

Pla< X <b) = /b fx(x)dx.

Probabilities with continuous random variables are found by integrating the pdf.

Example 4.1. The amount of loss/damage (in millions of dollars) due to catastrophic
weather is a continuous random variable X with pdf

3000 >0
fx(z) =< (A0+z)¥ -
0, otherwise.

This pdf is shown in Figure 4.1 (next page).
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fx(x)
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Figure 4.1: Probability density function of X in Example 4.1. The shaded area under the
curve is P(10 < X < 15).

Q: What is the probability the amount of loss/damage is between 10 and 15 million dollars?

A: We want
153000

15

To do this integral, let
u=104+2 = du = dx.

With this u-substitution (noting the change in limits), the last integral equals

25 25 25
3000 1 11 1 1
/ 1 du = 3000/ —4du = 3000 <———3> = 1000 (— — —) = 0.061.
20 U 90 U 3u

20 203 253
Therefore,

P(10 < X < 15) = 0.061.

That is, 6.1% of all loss/damage amounts from catastrophic weather will be between 10 and
15 million dollars.
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fx(x)

Figure 4.2: Probability density function of X in Example 4.2. The shaded area under the
curve is P(X < 4.95).

Integration in R: One-dimensional integrals can be found numerically using the integrate
function in R. In Example 4.1,

> pdf <- function(x){3000/(10+x) "4}
> integrate(pdf,lower=10,upper=15) # P(10<X<15)
0.061 with absolute error < 6.8e-16

The absolute error arises from the adaptive quadrature method used to perform numerical
integration (it is generally very small for “well behaved” functions we are integrating).

Example 4.2. Let the continuous random variable X denote the current measured in a
thin copper wire (in milliamperes, mA). Assume the range (support) of X is [4.9,5.1] mA

and the pdf of X is
5, 49<zx<5.1
fx(z) =

0, otherwise.

This pdf is shown in Figure 4.2 (above).
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Q: What is the probability the current measurement is less than 4.95 mA?
A: We want

4.95

P(X <4.95) = fx(z)dx = /

4.9 4.9

4.95 4.95

5dx:5(x

) = 5(4.95 — 4.9) = 0.25.

4.9
That is, 25% of all current measurements will be less than 4.95 mA.

Remark: In Example 4.2, the pdf is constant across the range (support) of X. We call this
a uniform distribution. Probability is assigned equally to intervals of the same size across
the support of X.

Example 4.3. UPS ships millions of packages every month in a specific 1-ft*> packing
container. Define

X = amount of space occupied in this container (in ft%).

The pdf of X is given by

90z%(1—x), 0<z<1
fx(z) = :
0, otherwise.
This pdf is shown in Figure 4.3 (next page).

Q: What is the probability a package will be filled at 0.9 ft> or more?
A: We want

P(X >0.9) = /02 fx(x)de = /01 902%(1 — x)dx

9

1
= 90/ (2% — 2%)dx
0

9
g2 ' L1 09 099
N 9 10 N 9 10 9 10

That is, approximately 26.4% of all containers will be filled at 0.9 ft or more.

) ~ 0.264.

0.9

R: Here is how to calculate this probability in R:

> options(digits=3)

> pdf <- function(x){90*x~8*(1-x)}

> integrate(pdf,lower=0.9,upper=1) # P(X>=0.9)
0.264 with absolute error < 2.9e-15

Discussion: Discrete distributions (last chapter) assign positive probability to specific
points. Calculating probabilities with continuous distributions is done by integration. We
integrate a continuous random variable’s pdf fy(x) over the range defined by the event of
interest. In continuous distributions, all single points are assigned zero probability.
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Figure 4.3: Probability density function of X in Example 4.3. The shaded area under the
curve is P(X > 0.9).

Why? This makes sense if you think about it using calculus. Suppose a is a number in the
support of X. The probability

P(X = a) = / fr(@)dz = 0.

The area under fx(x) above a single point is always zero. This highlights the salient difference
between discrete and continuous random variables. In discrete models, specific points have
positive probability. In continuous models, they don’t. It follows that

Pla<X <b)=Pa<X<b=Pla<X<b=Pla<X<b)

/a b Fx(z)dz.

The endpoints simply don’t matter when X is continuous. Of course, this is not true in
discrete distributions.

and each one equals
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Terminology: The cumulative distribution function (cdf) of a continuous random
variable X gives probabilities of the form

Fx(z)=P(X <zx)= /_x fx(t)dt

for any real number z.

e When X is a continuous random variable, the cdf Fx(x) is a continuous function.
e Applying the Fundamental Theorem of Calculus (part 1), it follows that

d

TPx() = 4o [ st = fx(a).

That is, differentiating a continuous random variable’s cdf produces the pdf.

Example 4.1 (continued). The amount of loss/damage (in millions of dollars) due to
catastrophic weather is a continuous random variable X with pdf

3000 >0
T EERYE T =
fx(z)=¢ (10+x)
0, otherwise.
The cdf of X is
0, z <0

Fx(x) = 3
x(@) 1—(1012 ) , x>0.
T

The pdf and cdf are shown side by side in Figure 4.4 (next page). We previously calculated

15 15 3000
P10<X<15:/ f J,’dl’:/ ———dz = 0.061
( ) 10 x(@) 10 (10+2)t

by integrating the pdf over (10,15). We can also get this from the cdf:

P(10 < X <15) = P(X <15)— P(X < 10)

= Fx(15) — Fx(10) = [1— (101&5)3] - [1— (mlfm)g] = 0.061.

This example illustrates the following general result for continuous random variables:

P(a < X< b) = / fx(l')dl' = Fx<b) — FX(a),

which, in essence, applies the Fundamental Theorem of Calculus (part 2).
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|

0.0

0.00

Figure 4.4: Left: Probability density function (pdf) of X in Example 4.1. Right: Cumulative
distribution function (cdf) of X.

Examples 4.2 and 4.3 (continued). The pdfs and cdfs are

0, r <49
5, 49<x <51
4.2. fx(x)= . = Fx(r)=1¢ dr—245 49<z<51
0, otherwise
1, x>5.1
0, <0
90z%(1—x), 0<z<1 0 0 -
4.3. fx(x)= . = Fx(z)=¢ 102" -92", 0<z<1.
0, otherwise ) .-
, >

These functions are shown in Figures 4.5 and 4.6 (next page).

e In Example 4.2, using the cdf gives

P(X < 4.95) = Fx(4.95) = 5(4.95) — 24.5 = 0.25.

e In Example 4.3, using the cdf gives
P(X >09)=1-P(X <09)=1- Fx(0.9) =1 — [10(0.9)° — 9(0.9)"°] ~ 0.264.

Note: These are the same answers we got by using the pdfs (and integrating). The lesson
here is that knowing a random variable’s cdf can greatly simplify our work. For upcoming
“named” continuous distributions, like the exponential, gamma, normal, and others, the
corresponding cdfs are available in R.
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Figure 4.5: Left: Probability density function (pdf) of X in Example 4.2. Right: Cumulative

distribution function (cdf) of X.
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Figure 4.6: Left: Probability density function (pdf) of X in Example 4.3. Right: Cumulative
distribution function (cdf) of X.
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4.2 Mean, variance, and percentiles

Terminology: Suppose X is a continuous random variable with pdf fy(x). The expected
value of X is

pw=FEX)= /00 zfx(z)dz.

—00

We interpret E(X) the same way as we did in the discrete case:
e a center of gravity or “balance point” on the pdf
e a “long-run average.”
In statistical applications, = F(X) is called the mean or population mean.

Remark: The limits of the integral in the definition F(X) above, while technically correct,
will always be the lower and upper limits corresponding to the nonzero part of the pdf.

Example 4.4. Let the continuous random variable X denote the diameter of a hole drilled
in a sheet metal component. The target diameter is 12.5 millimeters. However, random
disturbances to the drilling process result in larger diameters. Historical data show the
distribution of X can be modeled by the pdf

20e~X@=125) 4 5 19,5
fx(z) = .
0, otherwise.

This pdf is shown in Figure 4.7 (next page).

Q: Find the mean diameter E(X).
A: We calculate

E(X) :/ fo(m)dx:/ 20x6_20(‘”_12'5)dx:20620(12'5)/ e 2%%dz.
1 1

2.5 2.5 12.5

To do the last integral, use integration by parts with

U=z du = dz
1
dv = —QOJ:d — = 520z
v=-e T ) 206

so that

> x
/ xe—Zdel, — (__6—2030
12,5 20

12,5 _s00125) 1 L 2
20 ¢ To0 720

e > 1 —20
— ——e dx
12_5) /12.5 20

= 125 55005 L o0a125)
) BT T 300° '

12.5

Therefore,

12.5 1 1
9()£20(12.5) —20(12.5) —20(12.5) 12. 12. .
E(X) = 20e 20 e + —4006 =12.5+ 20" 55 mm
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X
< S
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12.5 12.6 12.7 12.8 12.9 13.0

X

Figure 4.7: Probability density function of X in Example 4.4. The expected value E(X) =
12.55 is shown by a solid circle.

R: Here is how to calculate £(X) in R:

> x.times.pdf = function(x){x*20*exp(-20%(x-12.5))}
> integrate(x.times.pdf,lower=12.5,upper=Inf) # E(X)
12.55 with absolute error < 1.3e-07

Result: Suppose X is a continuous random variable with pdf fx(z) and g is any function.
Then g(X) is also a random variable and its expectation (mean) is

Elg(X)] = / " o) fx ().

o0

Linearity rules: These rules are the same as they were in the discrete case:
(a) E(c) = ¢, for any constant ¢
(b) Elcg(X)] = cE[g(X)], for any constant ¢

(c¢) The expectation of the sum is the sum of the expectations; i.e.,

Elgi(X) + g2(X) + -+ + gu(X)] = E[g1(X)] + Elg2(X)] + - - - + E[gr(X)].
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Terminology: Suppose X is a continuous random variable with pdf fx(z) and mean u =
E(X). The variance of X is

2 =V(X) = Bl(X )
_ / (2 — 1) fx (x)d.

The standard deviation of X is the positive square root of the variance:

NN 3]

Variance computing formula: Suppose X is a random variable (discrete or continuous)
with mean p = F(X). An alternative way to find V(X)) is by using

V(X) = E(X?) = [E(X)]".

Linear functions: Suppose X is a continuous random variable with pdf fx(z) and mean
i = E(X). Suppose a and b are constants. The mean and variance of the linear function
aX + b are

E(aX +b) = aE(X)+b
V(eX +b) = a*V(X).

These rules are the same as they were in the discrete case.

Example 4.5. Conductive coatings are applied to a wide variety of materials to make them
electrically conductive or to shield them from electromagnetic interference. The thickness
of a coating applied to a medical device (measured in micrometers) is a continuous random

variable X with pdf
1200

fx(@) =< a2’

0, otherwise.

400 < z < 600

This pdf is shown in Figure 4.8 (next page).
Q: Find E(X) and V(X).

A: The mean is

600 600 19
E(X):/4 rfx(z)dr = /4 Ooxdx

2
00 00 x

600 |
= 1200 / — dx
400 L

600
= 1200 (hwc‘ ) = 1200(In 600 — In 400) ~ 486.6 fim.
400

To find the variance, let’s use the variance computing formula. First, we find

600 600 1200$2 600
E(X?) = / 2? fx (x)de = / ——dx = 1200 / Ldz = 1200(600 — 400) = 240000.
4 4

00 400 r 00
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Figure 4.8: Probability density function of X in Example 4.5. The expected value E(X) ~
486.6 is shown by a solid circle.

Therefore,
V(X) = E(X?) — [E(X)]* &~ 240000 — (486.6)% ~ 3220.4 (um)>.

Q: The coating costs C' = 40 + 0.15X dollars to apply to each device. That is, there is a
fixed cost of 40 dollars plus an additional cost of 0.15 dollars for each micrometer of coating

applied. Find E(C) and V(C).
A: The cost C is a linear function of X. We have

E(C)=E(40+0.15X) =40+ 0.15F(X) ~ 40 + 0.15(486.6) ~ 112.99 dollars.
The variance is

V(C) = V(404 0.15X) = (0.15)*V(X) ~ (0.15)%(3220.4) =~ 72.46 (dollars)?.

The standard deviation of C is

oo =+/V(C) ~ V7246 =~ 8.51 dollars.
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Terminology: Suppose X is a continuous random variable with cdf Fix(x) and pdf fx(x).
The pth quantile (0 < p < 1) of X, denoted by ¢,, satisfies

b
PX <op)= [ [x(@)de = Fx(dp) = p.

In other words, ¢, is the value for which 100p% of the possible values of X are below ¢,.
Some authors call ¢, the 100pth percentile of the distribution of X. For example,

e ¢p10 = 10th percentile. This means 10 percent of the values of X are below ¢q 19, and
90 percent of the values are above ¢ 19.

® @50 = H0th percentile. This means 50 percent of the values of X are below ¢q .59, and
50 percent of the values are above ¢g 5. This is also called the median of X.

® (099 = 99th percentile. This means 99 percent of the values of X are below ¢q.g9, and
1 percent of the values are above ¢ g9.

Example 4.4 (continued). The diameter X (in millimeters) of a hole drilled in a sheet
metal component has pdf

20e20(@=125) 4 5125
fx(z) = .
0, otherwise.

The cdf of X is
0, z <0

Fx(ﬂf) = { 1— 6—20(:13*125) x> 12.5.

The pdf and cdf are shown side by side in Figure 4.9.

Q: Five percent of the diameters will be larger than what value?
A: We want ¢q g5, the 95th percentile of the distribution of X. We solve

$0.95
P(X S ¢0.95) — / 206720(:B712.5)d‘,1; — 1 - 6720@)0.95*12.5) — 095

12.5

for ¢g.95. This is done as follows:

1— 6720(¢0,95712.5) — 095 — 6720((250,95712.5) — 005
—  —20(dh.g5 — 12.5) = In(0.05)
1n(0.05)

— 125 = —
= ®0.95 5 50
In(0.05
= (¢p95 = 12.5 — al ) ~ 12.65.

Therefore, approximately 5 percent of the hole diameters will be larger than 12.65 mm.

Exercise: Find ¢q 50, the median coating thickness in Example 4.5. How does ¢ 50 compare
to B(X)?

PAGE 60



CHAPTER 4 STAT 509

15 20
I

fx(x)
Fx(x)

0.95

125 12.6 12.7 12.8 12,9 13.0 125 12.6 12.7 12.8 12.9

X X

Figure 4.9: Left: Probability density function (pdf) of X in Example 4.4. Right: Cumulative
distribution function (cdf) of X. The 95th percentile ¢ 95 ~ 12.65 is shown in each figure.

4.3 Exponential distribution

Definition: A continuous random variable X has an exponential distribution with pa-
rameter \ > 0 if its pdf is given by

—Az
fX(x):{/\e , x>0

0, otherwise.

We write X ~ exponential(\). Different values of A\ give different pdfs. All pdfs have the
same exponential decay shape; the value of A controls the scale; see Figure 4.10 (next page).
Remarks:

e The first thing we note is the exponential distribution is for positive quantities (x > 0).

This include things like part dimensions, weights, biomarkers, and times.

e The exponential distribution is used in reliability analysis and other areas which
focus on “time-to-event” random variables, for example,

— the time until part failure

the time until disease onset

the time until an insurance claim is filed

the time until a catastrophic weather event.
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Figure 4.10: Exponential pdfs for different values of .

MEAN/VARIANCE: If X ~ exponential()\), then

CDF: If X ~ exponential(\), then the cdf of X is

0, <0
FX(m) B 1—e ™ >0.

Example 4.6. The monthly precipitation in Columbia, SC, is a continuous random variable
X which is assumed to follow an exponential distribution with mean 4 inches.

Q: What is the probability a given month will have more than 10 inches of precipitation?
A: First note that
E(X)=4 = X=0.25.
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Figure 4.11: Left: Probability density function (pdf) of X in Example 4.6. The probability
P(X > 10) ~ 0.082 is shown shaded. Right: Cumulative distribution function (cdf) of X.
The median ¢g 59 &~ 2.77 is shown by a solid circle.

The pdf and cdf of X are

fe(@) 0.25e 9% 2 >0 4 Fe(a) 0, <0
x) = an x) = ,
X 0, otherwise X 1—e 2% >0

shown in Figure 4.11 (above). We want

P(X >10) = 1— P(X <10)
= 1— Fx(10)
= 1—[1—e0%00] = 725 x 0.082.

Therefore, approximately 8.2% of the months will have precipitation amounts larger than 10
inches.

Q: What is the median monthly precipitation?
A: We want to solve

FX(¢O.50) =05 = 1— ¢ 925%50 — (5

— e 0P =05
In(0.5)

0.25

This means 50 percent of the months will have precipitation amounts less than 2.77 inches
(and 50 percent of the months will be greater).

~ 2.77 inches.

— —0.25¢0'50 = 1H(O5) — ¢0‘50 = -
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EXPONENTIAL R CODE: Suppose X ~ exponential()\).

Fx(z) = P(X < z) bp
pexp(x,\) qexp(p,\)

> options(digits=3)

> 1-pexp(10,0.25) # 1-P(X<=10)
[1] 0.0821

> qexp(0.5,0.25) # median

[11 2.77

POISSON-EXPONENTIAL RELATIONSHIP: Recall a Poisson distribution arises
when we are counting the number of “occurrences” over a unit interval of time (see Section
3.6, notes). Define

X = the time until the first occurrence.

This is a continuous random variable and it follows an exponential distribution with param-
eter \, where A is the mean number of occurrences per unit interval of time in the Poisson
counting process. That is, X ~ exponential(\).

Example 4.7. In a corporate computer network, user log-ons to the system are modeled as
a Poisson process with a mean of A = 25 log-ons per hour.

Q: What is the probability it takes longer than 10 minutes for the first user log-on to occur?
Note that 10 minutes = 1/6 of one hour.

A: The time until the first user log-on X follows an exponential distribution with A = 25.
The pdf and cdf of X are

25" >0 0, r<0
Jx(@) = { 0, otherwise and - Fx(r) = { l—e® >0
We want
P(X>1/6) = 1—P(X <1/6)
= 1— Fx(1/6)
= 1—[1—e W09 =¢2/6 ~0.016.

> 1-pexp(1/6,25) # 1-P(X<=1/6)
[1] 0.016

Remark: Another interesting fact is the time between any two successive occurrences in
a Poisson process follows the same exponential(\) distribution. Times between successive
occurrences are called interarrival times. In Example 4.7,

e the time until the first user log-on is exponential(A = 25),
e the time between the first user log-on and the second is exponential(\ = 25),
e the time between the second user log-on and the third is exponential(A = 25),

and so on.
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Figure 4.12: Probability density function of X in Example 4.7. The shaded area under the
curve is P(X > 1/6) ~ 0.016.

MEMORYLESS PROPERTY: A unique property of the exponential distribution is its
“lack of memory.” Suppose a continuous random variable X measures the time until some
event occurs (e.g., part failure, disease onset, claim is filed, catastrophic weather, etc.). If
X ~ exponential()), then

P(X >t1+t2|X > tl) :P(X > t2>
In the context of a part failing, here is how this can be intepreted:

e We have one part in the field whose failure time X is known to be larger than ¢;, that
is, the part has been in operation and has not failed before time ;.

e We have a second part that has just been put in operation (at “time zero”).

e The memoryless property says the probability the first part does not fail before an
additional time of ¢5 is the same as the second part not failing before time ¢5. In other
words, the fact the first part has been in operation for time t; has been “forgotten.”
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Remark: The memoryless property is mandated whenever one makes an exponential dis-
tribution assumption about the time to event. It is a restrictive condition and may not be
realistic. For example, in the part failure context, an exponential distribution assumption
for X requires that parts in the field do not “wear out” or “get stronger” over time.

Example 4.8. At a hospital’s intensive care unit (ICU), the time until patient discharge (in
days) is a continuous random variable X which is assumed to have an exponential distribution
with A = 1/7. The pdf and cdf of X are

L

e x>0 0, <0
fx(@)=4q 7

and Fx(z) = { s .
0, otherwise 1—e , >0

Q: One patient has been in the ICU for 5 days. What is the probability the patient is still
in the ICU after 8 days?
A: From the memoryless property, we know

P(X >8|X >5)=P(X > 3).

This equals
1-P(X<3)=1-Fx(3)=e*"~0.65.

4.4 Gamma distribution

Definition: A continuous random variable X has a gamma distribution with parameters
r >0 and A > 0 if its pdf is given by

ATl
- T X O
Fela) = F(r)x e x >

0, otherwise.
We write X ~ gamma(r, ). We call
e r = shape parameter
e )\ = scale parameter.

Different values of r and A give different pdfs; see Figure 4.13 (next page). The gamma
distribution is more flexible than the exponential distribution. Introducing the extra pa-
rameter 7 allows for different shapes, whereas the exponential distribution imposes the same
exponential decay shape regardless of what A is.

Q: What is I'(r)?
A: Tt is a constant defined as the following integral

F(r):/ u" e du,
0

provided that » > 0. In mathematical analysis, this is called the gamma function.
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Figure 4.13: Gamma pdfs for different values of r and .

Important: When r = 1, the gamma(r, \) distribution reduces to the exponential(\) dis-
tribution. This is true because

(1) = / e ‘du=1
0

and therefore the gamma(r, \) pdf

)\7‘
L(r)

r=le=2 — Xe™™  provided that r = 1.

Xz

GAMMA R CODE: Suppose X ~ gamma(r, \).

Fx(x)=P(X < x) ®p
pgamma (x,r,\) qgamma (p,r,\)

Note: Probability and quantile calculations for the gamma distribution can be carried out
using R. The cdf of X ~ gamma(r, ) does not exist in closed form for all values of r > 0,
so numerical evaluation is required.
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Figure 4.14: Probability density function of X in Example 4.9.

Example 4.9. The lifetime of a diesel engine fan blade X (in 1000s of hours) is modeled
using a gamma distribution with » = 2.2 and A = 0.4. This pdf is shown in Figure 4.14.

Q: What is the probability a fan blade fails before 5000 hours of operation?
A: We want
P(X <5)= /5 (0.4 ot2e " dy ~ 0.536
o I'(2.2) R

This probability is calculated numerically using the R code:

> options(digits=3)
> pgamma(5,2.2,0.4)
[1] 0.536

Q: Find the 90th percentile of this distribution and interpret what it means.

> options(digits=5)
> qgamma(0.9,2.2,0.4)
[1] 10.461

Ninety percent of all fan blades will fail before 10,461 hours of operation.
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MEAN/VARIANCE: If X ~ gamma(r, A), then

<>l

ﬁ.
Letting 7 = 1 in the formulas above gives E(X) and V(X)) for X ~ exponential(\).

POISSON-GAMMA RELATIONSHIP: Recall a Poisson distribution arises when we
are counting the number of “occurrences” over a unit interval of time (see Section 3.6, notes).
Define

X = the time until the rth occurrence.

This is a continuous random variable and it follows a gamma(r, A) distribution, where A is
the mean number of occurrences per unit interval of time in the Poisson counting process.
That is, X ~ gamma(r, \).

e Of course, if r = 1, then X is the time until the first occurrence, which we know is
exponential(A).

Example 4.7 (continued). In a corporate computer network, user log-ons to the system are
modeled as a Poisson process with a mean of A = 25 log-ons per hour.

e the time until the first user log-on is exponential(A = 25),
e the time until the second user log-on is gamma(r = 2, \ = 25),

e the time until the third user log-on is gamma(r = 3, \ = 25),

and so on.

4.5 Normal distribution

Definition: A continuous random variable X has a normal distribution with mean px and
variance o2 if its pdf is given by

1

e’(””’“)Q/Q”Q, for —oo < x < 00.
2o

fx(z) =

We write X ~ N (u,0?). This is also called the Guassian distribution. The parameters
w and o2 are the mean and variance of X, respectively, that is,

EX) = p

V(X) = o

The mean p identifies where the “center” of the distribution is. The variance o? measures
the “spread” of the distribution.
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Figure 4.15: Normal pdfs for different values of x4 and 2. Note the standard deviation o is
used instead of the variance o2.

Facts:
e The N(u,0?) pdf is symmetric about the mean p.
e The N(u,oc?) pdf has points of inflection at y — o and p + 0.
e The N(u,c?) pdf follows the 68-95-99.7% Rule:
Pu—o<X<pu+o) ~ 0.68
Plp—20 <X <p+20) = 0.95
P(u—30 <X < pu+30) ~ 0.997.

That is, approximately 68% of the observations x will be within 1 standard deviation of
the mean, approximately 95% of the observations will be within 2 standard deviations
of the mean, and approximately 99.7% of the observations will be within 3 standard
deviations of the mean.

— Tt is unlikely for a N(u,o?) random variable to have a value x further than 3
standard deviations away from its mean in either direction; this probability is
approximately 0.003 or 0.3%.

PAGE 70



CHAPTER 4 STAT 509

NORMAL R CODE: Suppose X ~ N (u,0?).

Fx(x) = P(X <x) ®p

pnorm(x, t,0) qnorm(p, it,0)

Note: Probability and quantile calculations for the normal distribution can be carried out
using R. The cdf of X ~ N (p,0?) does not exist in closed form, so numerical evaluation is
required. Note that R parameterizes the normal distribution by the standard deviation o
(not the variance o?).

Example 4.10. The daily demand for water use in Atlanta, GA, is a continuous random
variable X, measured in millions of gallons. Suppose the distribution of X is normal (Gaus-
sian) with mean g = 447 and standard deviation o0 = 32. This pdf is shown in Figure 4.16
(next page).

Q: What is the probability the daily water demand will be less than 400 million gallons?
A: We want

400
1 2 2
P(X < 400) = / NGITED) e~ @ MN7/262% 40 2 0.071.

This probability is calculated numerically using the R code:

> options(digits=3)
> pnorm(400,447,32)
[1] 0.071

Q: City reservoirs are filled daily to a designated capacity. What capacity is needed so that
the probability the daily demand exceeds the capacity is only 0.017
A: We want ¢g.g9, the 99th percentile of this distribution. From R,

> options(digits=9)
> gnorm(0.99,447,32)
[1] 521.443132

Therefore, the capacity should be set at 521,443,132 gallons.

Terminology: A normal random variable with mean 0 and variance 1 is called a standard
normal random variable. The pdf of Z ~ N (0, 1) is

1
fz(z) = e * /2 for —oo < z < o0,

V271

The cdf of Z can be written as

=1 2
Fy(2)=P(Z < 2 :/ — e /24t
Z ( ) ( ) - \/ﬁ
The term e **/2 in the integrand does not have an antiderivative in closed form, so prob-
abilities and quantiles associated with the standard normal distribution (and, in fact, any
normal distribution) must be calculated numerically.
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fx(x)
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Figure 4.16: Probability density function of X in Example 4.10. The shaded area under the
curve is P(X < 400) ~ 0.071.

Important: If X ~ AN (u,0?), then

X —p
o

7 =

~ N(0,1).

This result says any normal random variable X can be “converted” to a standard normal
random variable Z by applying this linear transformation. This conversion is known as
standardization. For example, suppose exam scores for a population of students have
mean g = 70 and standard deviation o = 10. A student’s score of 85 has standardized value

85 — 70
= =1.5.
z 0 5

This means the student’s score is 1.5 standard deviations above the mean. Similarly, a

student’s score of 55 produces
55 — 70 15
z = =—1.
10 ’

meaning the score is 1.5 standard deviations below the mean. From the 68-95-99.7% Rule,
we know almost all standardized values z will be between —3 and 3.
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5 Reliability Analysis and Lifetime Distributions

Terminology: Reliability analysis deals with the analysis of “time-to-event data.” This
means we are interested in a continuous random variable T" which measures the time until
something occurs. For example,

T = time until part failure

T = time until maintenance is required
T = time until a warranty claim is filed
T = lifespan of a biological organism.

It is understood we are measuring something for which there is an unambiguous start and
end, with the time in between corresponding to 7. We call T" a lifetime random variable
because P(T > 0) = 1, that is, T" assumes positive values only.

Terminology: A lifetime distribution describes the distribution of a lifetime random
variable T'. It has positive support. Some common choices are

e Weibull <— by far the most common in engineering applications
e lognormal

e gamma

e exponential (arises as a special gamma and as a special Weibull).

Although the normal distribution is the most widely used distribution in all of statistics, it
is rarely used for reliability analyses. Typical time-to-event data are positive and skewed to
the right. These characteristics are incongruous with normal distributions.

5.1 Weibull distribution

Definition: A continuous random variable 7" has a Weibull distribution with parameters
B >0 and n > 0 if its pdf is given by

5(’5)51 (’f)ﬁ £ 0
L p |— = ’
Jr(t)=q n\n P U
0, otherwise.
We write T' ~ Weibull(,n). We call
e (3 = shape parameter

e 1) = scale parameter.

Different values of g and n give different pdfs; see Figure 5.1 (next page). Weibull distribu-
tions have positive support and are generally skewed to the right.
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Figure 5.1: Weibull pdfs for different values of g and 7.

Important: When 5 = 1, the Weibull(,n) distribution reduces to the exponential(\)
distribution, where A = 1/n. This is true because the Weibull(3, n) pdf

B-1 B
t t 1
é (_) exp [— (—) ] = Ze7¥m provided that 3 = 1.
nan n n

MEAN/VARIANCE: If T ~ Weibull(8, 7), then

E(T) = no (1 + %)

v(T) = n2{r (1+3)-]r (1+%)}}

where recall I'(+) is the gamma function defined in Section 4.4 (notes). The R code gamma (r)
will calculate

F(r):/ u" e du,
0

for any r > 0.
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CDF: If T' ~ Weibull(5,7n), then the cdf of T is

0, t<0
()
n

Therefore, Weibull probabilities of the form Fr(b) = P(T < b) and

Fr(t) = 1 —exp

P(CZ <T< b) = FT(b) — FT(G)

can be calculated without using numerical methods. Quantiles ¢, can be found by solving

fron-1-eo |- (2) ] -»

WEIBULL R CODE: Suppose T' ~ Weibull(3, n).

Frt) =P(T <) O
pweibull(t,3,n) qweibull(p,f3,n)

Example 5.1. In a mechanical assembly, a bearing allows a shaft to rotate smoothly with
minimal friction. The time until the bearing fails (in hours) is modeled as a Weibull random
variable T with § = 1.5 and n = 3000. The pdf and cdf of T" are shown side by side in Figure
5.2 (next page).

Q: What is the probability the bearing fails before 5000 hours of operation?
A: We want

5000\ ' _(5/315
P(T < 5000) = Pr(5000) =1 — exp | — ( 5055 —1l-¢ ~ 0.884.

That is, 88.4% of all bearings will fail before 5000 hours of operation.

> options(digits=3)
> pweibull(5000,1.5,3000)
[1] 0.884

Remark: When 7 measures the time to failure, we can think of the cdf Fr(t) as the
proportion of all units (here, shaft bearings) in the population which have “failed” before
time t. Of course, if a unit has not failed before time ¢, then it is still operational and hence
has “survived” up until time . We call

Sp(t) =1 — Fr(t)

the survivor function for this reason. It represents the proportion of all units in the
population still “alive” at time t.
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Figure 5.2: Left: Probability density function (pdf) of 7" in Example 5.1. Right: Cumulative
distribution function (cdf) of T.

Q: Find the mean and median time to bearing failure.
A: The mean time to failure is

1 )
E(T)=3000T (1 + 1—5) = 3000 I (5) ~ 2708.2 hours.

The median time to failure ¢q 5 solves

_ do5 _ b5\ B
Fr(¢os) =1—exp |— 2000 =05 = exp|— 3000 =0.5
dos \ 15
— —(300()) = In(0.5)

1.5
(;:)%%) = —1In(0.5)

¢0.5 1 1/1.5
2000 = [—In(0.5)]

— o5 = 3000[— In(0.5)]"/15 ~ 2349.7 hours.

!

> options(digits=5)

> 3000*gamma(5/3) # E(T)

[1] 2708.2

> qweibull(0.5,1.5,3000) # median
[1] 2349.7

PAGE 76



CHAPTER 5 STAT 509

5.2 Reliability functions

Goal: We now summarize some different, but equivalent, ways of defining the distribution
of a continuous lifetime random variable 7. We also introduce a new function which is used
in reliability studies.

e The cumulative distribution function (cdf)
Fr(t) = P(T <t).

This can be interpreted as the proportion of units (individuals) in the population that
have failed at or before time ¢.

e The survivor function
Sr(t) = P(T >t)=1— Fp(t).

This can be interpreted as the proportion of units (individuals) in the population that
have not failed by time t; e.g., unit is still operational, warranty claim has not been
made, organism is still alive, etc.

e The probability density function (pdf)

d d

fr(t) = %FT(t) = ——57(1).

Also, recall
t
Fr(t) = / fr(u)du <— area under the pdf over (0, 1)
0

and
Sr(t) = / fr(u)du <— area under the pdf over (¢, c0).
t

Terminology: The hazard function of a lifetime random variable T is defined as

Pt<T T>
h() = lim (t<T<t+e _t)’

e—0 €

for € > 0. The hazard function is not a probability; rather, it is a probability rate. It
characterizes the instantaneous potential for failure to occur, given that a unit (individual)
has already survived up to a certain point in time ¢.

Interpretation: The hazard function offers a useful interpretation. It indicates how the
rate of failure varies with time.

e Distributions with increasing hazard functions are seen in units (individuals) where
some kind of aging or “wear out” takes place. The population gets weaker over time.
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Figure 5.3: Examples of hazard functions. Increasing hazards correspond to the population
getting weaker over time.

e Distributions with decreasing hazard functions correspond to a population getting
stronger over time. This is observed in scenarios like the “infant mortality” phase in
manufacturing, where initial defects are weeded out, or in situations where components
become more robust with use.

e In some populations, the hazard function decreases initially, stays constant for a period
of time, and then increases. This corresponds to a population whose units get stronger
initially (defective units “die out” early), exhibit random failures for a period of time
(constant hazard), and then eventually the population starts to weaken (e.g., due to
wear/old age, etc.). These hazard functions are bathtub-shaped.

Result: Suppose T is a lifetime random variable with pdf fr(t) and survivor function Sy (t).
The hazard function
_ ()

- Sr(t)
We can therefore describe the distribution of 7" by using either fr(t), Fr(t), Sr(t), or hr(t).
If we know one of these functions, we can always retrieve the other three.

hr(t)
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Note: The previous result can be shown by using the definitions of conditional probability
(Chapter 2) and of the derivative from calculus. Note that

Pt<T <t+€T >t)

i) =ty ST
_ Pt<T<t+eand T >1)
— o e P(T > 1)
. Pt<T<t+e
= lim
e—0 € ST(t)
_ L Fr(t+ O —Fr(t) _ fe(t)
= im = ,
Sr(t) <0 € , - Sr(t)
:%FT(t)

WEIBULL HAZARD: If T' ~ Weibull(n, £), then the hazard function of T is

e o) % (%)616@ [_ (%)6]

hT(t) = = = =

e e
n

Interpretation: For a Weibull distribution,

B
0

e hp(t) is increasing if 5 > 1 (wear out; population gets weaker)
e hp(t) is constant if 5 = 1 (random failures; exponential distribution)

e hp(t) is decreasing if § < 1 (infant mortality; population gets stronger).

In other words, the value of the shape parameter § completely summarizes the relevant
feature of the hazard function. This is one reason the Weibull distribution is popular.
Engineers can characterize the rate of failure over time by knowing this single number.
Other lifetime distributions (e.g., gamma, lognormal, etc.) have hazard functions which are
more complex. They are not amenable to this easy interpretation.

Example 5.1 (continued). In a mechanical assembly, a bearing allows a shaft to rotate
smoothly with minimal friction. The time until the bearing fails (in hours) is modeled as a
Weibull random variable 7" with 5 = 1.5 and 1 = 3000. The hazard function

1.5-1
hr(t) = 15t __ 5 £1/2
3000 \ 3000 (3000)3/2

is an increasing function of ¢; see Figure 5.4 (next page). This means that (under the
Weibull model assumption) the rate of bearing failure increases over time. This corresponds
to “aging” or “wear out” in the population of bearings over time.

PAGE 79



CHAPTER 5 STAT 509
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Figure 5.4: Hazard function of 7" in Example 5.1.

5.3 Fitting a Weibull distribution to data

Curiosity: In Example 5.1, we used a Weibull distribution with 5 = 1.5 and n = 3000 to
model 7', the time until shaft bearing failure. A natural question to ask is, “Where do the
values of n and S come from?” or “How do we know these values are correct?”

e Formulating a good answer to the first question is easy, sort of. The reason for the
ambiguity is that § and n are population parameters. They represent the shape
and scale of the Weibull distribution that is selected to model the time to failure for
all shaft bearings in the population.

e Therefore, the only way we could determine 5 and 7 without ambiguity is to observe
the failure time T for all shaft bearings in the population! This is not possible. For
this reason, population parameters like n and § will be unknown in real life (and, thus,
no one can answer the second question above).

e What can we do? We do the next best thing. If we observe a sample of shaft bearings
from the population, we can find estimates of n and S by using the failure times in
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the sample. If the sample is representative of the population, then the estimates of n
and 8 we calculate should be reasonable “guesses” of what the true n and [ are.

e Of course, a deeper foundational question is “How do we know if the Weibull distribu-
tion is the correct lifetime distribution for the population of all shaft bearings?” Again,
this question cannot be answered, because “correct” is too strong a word (it would re-
quire us to observe the failure time of all shaft bearings in the population). We can
assess empirically whether the Weibull model is “reasonable” by using a representative
sample. This is done in the next section.

Example 5.2. A shock absorber is a suspension component that controls the up-and-down
motion of a vehicle’s wheels. The following data are n = 38 distances (in km) driven to
failure for a specific brand of shock absorber under extreme driving conditions.

6700 6950 7820 9120 9660 9820 11310 11690 11850 11880
12140 12200 12870 13150 13330 13470 14040 14300 17520 17540
17890 18450 18960 18980 19410 20100 20100 20150 20320 20900
22700 23490 26510 27410 27490 27890 28100 30050

We will assume a Weibull(3,n) distribution for
T = distance until failure (in km).

Because the population parameters § and 7 are not given to us, our first task is to estimate
them. We do this by finding the values of 8 and 7 that “most closely agree” with the data
above. Form the likelihood function

L(B,7) = ]3_8[ fr(t:) ﬁ % (%)5_16’“’ [_ (%)B]

i=1 =1

B\* 38 p-1 3B \B
= — tz exXp [ — (_1) )
where 1,19, ...,133 are the 38 distances. Informally, the likelihood function describes the

probability of the observed data. Therefore, the values of 8 and n that “most closely agree”
with the data are the values that maximize L(3,n).

o Let B and 7 denote the values of § and 7, respectively, that maximize L(/,7n). We call
£ and 7 maximum likelihood estimates.

e Finding 3 and 7] is a multivariable calculus problem we will solve numerically using R.

o In statistics speak, we say that B\ and 7 are estimates of the population parameters
and 7, respectively. The population here is the universe of all shock absorbers of this
specific brand.
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Figure 5.5: (Estimated) probability density function of 7" in Example 5.2.

Implementation in R: We can use the fitdistrplus package:

library(fitdistrplus)

distance.to.failure = c(6700,6950,7820, ..., 30050) # Enter the data
options(digits=3)
fitdist(distance.to.failure,distr="weibull" ,method="mle")

vV V V V

Fitting of the distribution ’ weibull ’ by maximum likelihood
Parameters:
estimate Std. Error
shape 2.9 0.367
scale 19125.6 1140.512

This output produces

2.9
19125.6.

=) @)
%

Q

These are the estimates of S and 1 based on the data from the previous page.
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Figure 5.6: Left: (Estimated) cumulative distribution function 7" in Example 5.2. Right:
(Estimated) survivor function of 7.

Here are the estimated functions for the shock absorber data in Example 5.2:

PDF:
2.9 t L9 t 29 .
— >
fr(t) = { 191256 \19125.6) 7 19125.6 ’
0, otherwise.
CDF /Survivor:
0, £<0 1, £<0

Fr(t) = £\ Sp(t) = £\ .
L —exp [_ <19125.6) , >0 b (19125.6) , 820

Q: Estimate the proportion of shock absorbers in this population that will still be operational
at 30,000 km.
A: We want

2.9
P(T > 30000) = 57(30000) = exp [— (139220506) ] ~ 0.025.

About 2.5% of all shock absorbers in the population will still be operational at 30,000 km.

> 1-pweibull(30000,2.9,19125.6) # P(T>=30000)
[1] 0.025
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hr(t)
6e-04 8e-04

4e-04

2e-04

0e+00

T T T T T T
0 10000 20000 30000 40000 50000

t

Figure 5.7: (Estimated) hazard function of 7" in Example 5.2.

Hazard:

2.9 t\"°
hr(t) = .
() = 151956 (19125.6)

This function is shown in Figure 5.7 (above). Because the hazard function is increasing, this
means the population of shock absorbers gets weaker over time.

5.4 Quantile-quantile plots

Importance: In a reliability analysis, we will typically assume a lifetime random variable T’
has a specific distribution, like the Weibull distribution. How do we know if this assumption
is reasonable?

e Because we are making an assumption about the distribution of all units (individuals)
in the population, we never get to know for sure if the distribution we have chosen is
correct.

e We can assess if the distribution we have chosen is “reasonable” based on the observed
data in the sample.
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Figure 5.8: Histogram of the shock absorber data in Example 5.2.

e This is part of the “model diagnostics” phase of any data analysis. This means we
are assessing (or diagnosing) the plausibility of the assumptions made as part of the
analysis.

Remark: The first thing I do in any data analysis is look at the data graphically. A
histogram of the n = 38 shock absorber distances is shown in Figure 5.8 (above). With
such a small sample, it’s hard to make good prognostications about “what’s going on” in the
population of all shock absorbers. However, the shape we see in the histogram does align
with the right-skewed shape we know is characteristic of a Weibull pdf. This is reassuring
but by no means determinative. There are many types of skewed right distributions.

Terminology: A quantile-quantile plot (qq plot) is a graphical display that can help
assess how well a distribution fits a data set. Here is how the plot is constructed:

e On the vertical axis, we plot the observed data ordered from low to high.

e On the horizontal axis, we plot the same number of (ordered) quantiles from the
distribution assumed for the observed data.
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Figure 5.9: Quantile-quantile plot of the shock absorber data in Example 5.2. This is a plot
of the observed data (vertical axis) versus quantiles of a Weibull distribution with shape

~

B = 2.9 and scale j = 19125.6 (horizontal axis).

Our intuition should suggest the following:

e [f the observed data align with the distribution’s quantiles, then the qq plot should look
like a straight line. This suggests the distribution fits the data well and is therefore
a reasonable choice for the population.

e [f the observed data do not align with the distribution’s quantiles, then the qq plot
should have curvature in it. This suggests the distribution may not be a good choice
for the population.

Assessment: The qq plot in Figure 5.9 (above) looks linear for the most part. Even though
the agreement isn’t perfect, the Weibull distribution appears to be reasonable for the shock
absorber data in Example 5.2.

Important: When you interpret qq plots, you are looking for general agreement. The
observed data will never line up perfectly with the distribution’s quantiles due to natural
variability—even when the distribution is correct! In other words, don’t be “too picky” when
interpreting these plots, especially with small sample sizes (like n = 38).
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Figure 5.10: Two qq plots with sample size n = 50. The Weibull(2,200) distribution is
assumed for the population.

o If there is disagreement, it will usually happen in the tails of the distribution (left or
right). With time-to-event data, disagreement in the right tail is more common.

e The bands in Figure 5.9 are shown to give the viewer a reference for how much vari-
ability about the line “is allowed.” However, even if a couple of points fall outside the
bands, especially if these points are in the tail, this should not cause dramatic concern.

Exercise: Figure 5.10 (above) shows two qq plots, each with sample size n = 50. The
population distribution is assumed to be Weibull with 5 = 2 and 7 = 200.

Q: I simulated two data sets. I then constructed qq plots (above) for each data set under
the assumption the Weibull(2,200) population distribution is correct. Which plot do you
think used data simulated from the correct distribution?

A: This was a trick question! Both qq plots show data sets simulated from the correct
distribution.

e In reality, I simulated about 20 data sets from the correct Weibull(2,200) distribution
and constructed qq plots for each one.

e [ then selected the qq plot that looked “the best” (left) and the one that looked “the
worst” (right).

e The lesson here is that qq plots, while helpful in model assessment, should not be
meticulously overanalyzed. This is especially true with small sample sizes.
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6 Bridge to Statistical Inference

6.1 Populations and samples (Parameters and statistics)

Goal: We now shift our focus to statistical inference. This deals with making statements
about a population of individuals based on information that is available in a sample taken
from the population.

e In most situations, it is not possible to observe all individuals in a population (e.g.,
all power supply units, all shaft bearings, all shock absorbers, etc.). The population is
too large, and it would be too time consuming to measure every individual in it.

e If the observed sample is representative of the population, then what we see in the
sample should approximate “what’s going on” in the population.

e In this class, we will assume the sample of individuals is a random sample. Mathe-
matically, this means all observations are independent and follow the same probability
distribution.

e Selecting a random sample is our best hope of obtaining individuals that are represen-
tative of the entire population.

Notation: We will denote a random sample of observations by using random variable

notation:
X1, Xo, ..., X,

That is, X7 is the value of X for the first individual in the sample, X5 is the value of X
for the second individual in the sample, and so on. The sample size tells us how many
individuals are in the sample and is denoted by n. Lower case notation x1, xs, ..., z, is used
when citing numerical values. We will typically call these data.

Example 6.1. Aluminum-lithium alloys are primarily used in the aerospace industry due
to their high strength-to-weight ratio and stiffness. The data below are the compressive
strengths (in psi) of n = 80 specimens of a new alloy undergoing evaluation as a possible
material for aircraft structural elements.

105 221 183 186 121 181 180 143 97 154 153 174 120 168 167 141
245 228 174 199 181 158 176 110 163 131 154 115 160 208 158 133
207 180 190 193 194 133 156 123 134 178 76 167 184 135 229 146
218 157 101 171 165 172 158 169 199 151 142 163 145 171 148 158
160 175 149 &7 160 237 150 135 196 201 200 176 150 170 118 149

Population: all alloy specimens (of this type) produced using the current process
Sample: the 80 specimens
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Figure 6.1: Left: AN (u,0?) pdf for X in Example 6.1. This serves as a model for the
population of all alloy specimens. Right: Histogram of the sample of n = 80 alloy specimens.

Engineers assume the random variable
X = strength of alloy specimen (in psi)

is normally distributed with mean p and variance o2. That is, X ~ N (u,0?). This is called
the population distribution. We use the term “population distribution” to mean the
distribution of X for all individuals (alloy specimens) in the population. The data, shown
above in Figure 6.1 (right), can be conceptualized as 80 independent observations from this
population distribution.

Remark: This example illustrates a common situation encountered in practice. The en-
gineers are willing to assume the population distribution is N (i, 0?), but the population
parameters associated with this distribution

i = population mean
2

o = population variance
are unknown. The statistical inference question then becomes, “How do we estimate these
parameters with the observed data?”

Remark: This is analogous to our discussion in the last chapter where we assumed a
Weibull(5, ) population distribution for a lifetime random variable T’; see Example 5.2. We
assumed a Weibull(/3,7n) distribution for the population of all shock absorbers. We then
estimated the population parameters § and n with the n = 38 shock absorbers in the sample
and used qq plots to assess the Weibull assumption.
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Terminology: A parameter is a numerical quantity that describes a population (more
specifically, all individuals in the population). In most situations, population parameters are
unknown. Some common examples are:

i = population mean
o? = population variance

o = population standard deviation
p = population proportion.

Terminology: Suppose X1, X, ..., X, is a random sample from a population with mean p

and variance 2.

e The sample mean is

X =

S|

i=1

e The sample variance is

1 —
5% = — D (X - X)%

i=1

e The sample standard deviation is the positive square root of the sample variance;
ie.,

R -
S =S = n_lz(Xi—X)Q.
=1

Terminology: A statistic is a numerical quantity that is calculated from a sample of
observations. In statistical inference, (sample) statistics are used to estimate (population)
parameters. We say

e the sample mean X is an estimate of the population mean g
e the sample variance S? is an estimate of the population variance o2

e the sample standard deviation S is an estimate of the population standard deviation
.

Example 6.1 (continued). We use R to calculate statistics for the alloy strength data:

> options(digits=4)
> mean(strength) # sample mean

[1] 162.7

> var(strength) # sample variance

[1] 1141

> sd(strength) # sample standard deviation
[1] 33.77
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Therefore, we would conclude:
e the population mean p can be estimated using = = 162.7 psi
e the population variance o2 can be estimated using s? = 1141 (psi)?

e the population standard deviation ¢ can be estimated using s = 33.77 psi.

Discussion: It is important to understand that when we calculate an estimate of a popu-
lation parameter, that’s all we are doing—we are taking a “guess” at what it is. There is no
guarantee we are correct or even close for that matter.

e Different samples will give different statistic values. For example, if engineers in Ex-
ample 6.1 sampled another n = 80 alloy specimens the following day, they would get
different strength measurements and, thus, all statistics’ values would change.

e Statistics’ values will change from sample to sample. On the other hand, population
parameters do not change. They continue to describe the entire population regardless
of how many times we sample from it.

e One desirable characteristic of a statistic, in general, is that it estimates the population
parameter “correctly on average.” This does not mean one sample will estimate the pa-
rameter correctly (some samples will underestimate; some samples will overestimate).
This means that over the long run, if one took many samples, the statistic would
estimate the parameter correctly on average. This is the definition of unbiasedness.

e [t also makes sense to think about how variable a statistic’s value might be from sample
to sample. Doing this will help us understand how much variability is associated with
the statistics we calculate. In turn, this will help us form confidence intervals for
parameters we wish to estimate (next chapter).

6.2 Point estimation and sampling distributions

Note: The ideas in this section can be applied to a variety of situations. Therefore, to keep
our discussion general, we let 6 denote an arbitrary population parameter.

e For example, 6 could denote a population mean, a population variance, a population
proportion, a Weibull population distribution parameter, etc.

e It could also denote a parameter in a linear regression model (Chapters 10-11) or other
statistical model.

e Whatever the quantity 6 represents, the salient point is that it is unknown because it
describes the entire population. We want to estimate it using a random sample.
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¢ A 6 0
6 0

Figure 6.2: Sampling distribution of the point estimator 0. Left:  is an unbiased estimator.
Right: € is a biased estimator.

Terminology: A point estimator 0 is a statistic that estimates a population parameter
f. Common examples are:

X — a point estimator for the population mean y
S? — a point estimator for the population variance o

S —— a point estimator for the population standard deviation o.

Important: Because a point estimator 0 is a statistic, its value depends on the sample
that is observed, and, as we just discussed, its value will be different for different samples.
Therefore, it makes sense to think about the distribution of all possible values of # that could
arise from sampling.

Terminology: The distribution of a point estimator g is called its sampling distribution.
This distribution describes how 6 would vary in repeated sampling from the same population.
We say that 0 is an unbiased estimator of 0 if

~

E®) = 0.

In other words, the mean of the sampling distribution of 0 is equal to 6. This means that )
will estimate 6 “correctly on average.”

Result: Suppose X, Xs, ..., X, is a random sample from a population with mean p and
variance 2. Mathematics can show

EX) = n

E(S?*) = o%
That is, the sample mean X is an unbiased estimator of the population mean . The sample
variance S? is an unbiased estimator of the population variance o2.
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Figure 6.3: Sampling distribution of the point estimator 0. The variability associated with
0 is smaller for the sampling distribution on the right.

Discussion: Unbiasedness is a desirable property for a point estimator 9 to possess. This
deals with accuracy.

e Unbiased estimators are perfectly accurate. This does not mean 0 will estimate 0
perfectly for a given sample. Over the long run, 6 will estimate 6 correctly on average.

e In the light of the last remark, it is important to understand that 0 will probably miss
0 for a given sample—even when 6 is unbiased. By how much will it miss? This is a
question about precision.

e Figure 6.3 (above) shows two sampling distributions, and 0 is an unbiased estimator
in both. However, the variability in the sampling distribution on the right is smaller.
That is, when 0 “misses” 0, it doesn’t miss by as much. The point estimator 0 whose
sampling distribution is depicted on the right is more precise.

e Best of both worlds: We would prefer point estimators 8 to be unbiased (perfectly
accurate) and have small variance (highly precise). In practice, improving the precision
of a point estimator # can usually be accomplished by increasing the sample size.

Terminology: The standard error of a point estimator ) quantifies how variable it is.
Specifically, it equals

se(8) = \/V(0).

In other words, the standard error of 9 is the standard deviation of its sampling distribution.
Therefore, R R
smaller se(f) <= 6 more precise.
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Recall: We have seen standard errors before. In Example 5.2, we estimated a Weibull(3, )
distribution for the distance until failure (in km) for a population of shock absorbers. Here
was the R output:

> options(digits=3)
> fitdist(distance.to.failure,distr="weibull" ,method="mle")

Fitting of the distribution ’ weibull ’ by maximum likelihood
Parameters:
estimate Std. Error
shape 2.9 0.367
scale 19125.6  1140.512

In our new estimation language, we would say

o~

e 3 =29 is a point estimate for 3, the population shape parameter
e 1) = 19125.6 is a point estimate for 7, the population scale parameter

e The R output above also displays the standard errors of both point estimates. These
describe how variable the point estimates are.

e Point estimates and standard errors will play an important role in writing confidence
intervals. We start this discussion in the next chapter.

6.3 Sampling distribution of X

Importance: Averages (sample means) are the most widely used statistics, so it is important
to understand how they vary in repeated sampling. For example,

e average yield of a chemical production process
e average time to part failure
e average precipitation level

e average number of defects per piece of raw material.

Result 1: Suppose X1, Xs, ..., X,, is a random sample from a N (u, 0?) population distribu-
tion. The sample mean X has the following sampling distribution:

2
YNN(N,%).

normal population distribution = sampling distribution of X is also normal.

e Our first observation here is

PAGE 94



CHAPTER 6 STAT 509

e This result also reminds us that o
E(X) =u,

that is, the sample mean X is an unbiased estimator of the population mean /.

e This result shows the standard error of X is

se(X) = /V(X) = %2 - %

This reveals the variability in the possible values of X depends on

— the population standard deviation o (for individuals in the population)

— the sample size n.

Implication: Larger samples will reduce the variability associated with X as a point esti-
mator of y. This will lead to more precise estimates. This is also true when the population
distribution is non-normal (Result 2; coming up).

Example 6.2. In cardiology, an ejection fraction (EF) measures your heart’s ability to
pump oxygen-rich blood out to your body. This is measured as a percentage and quantifies
the amount of blood pumped out of the left ventricle when your heart contracts. Suppose
for a population of healthy male subjects, the ejection fraction X is normally distributed
with mean p = 56 and standard deviation o = 8.

Q: What is the population distribution?
A: X ~ N(56,64). This is the distribution of EF for all male subjects in the population.

Q: A random sample of n = 16 males is selected from the population and the EF is measured
on each subject producing X, Xs, ..., X16. What is the sampling distribution of X, the
sample mean EF?

A: Use Result 1:

o? 64

YNN(M,E) — 7~N(56,1—6) — X ~ N(56,4).

The sample mean X is normally distributed with mean 56 and variance 4.

Q: In the last part, what is the standard error of X7
A: The standard error of X is the standard deviation of its sampling distribution, here,

se(X) =v4=2.

Note that this is also
se(X) = %

using the formula above.
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Figure 6.4: N(56,64) pdf for X in Example 6.2. This serves as a model for the population
of all healthy male subjects. The sampling distribution of X with n = 16 is also shown.

Q: Calculate P(X > 60) and P(X > 60) and explain what these mean.
A: We want

60 — 56
8

X —
P(X > 60) = P( < 5 ) = P(Z > 0.5) ~ 0.309.

This means about 30.9% of the population of all male subjects will have an EF larger than
60. Also,

X —56 _ 60— 56
8/v/16 ~ 8/y/16

If we observed a random sample of n = 16 male subjects from this population, the probability
the sample mean ejection fraction X would be larger than 60 is about 0.0228.

P(X >60) =P ( ) = P(Z > 2) ~ 0.0228.

> options(digits=3)
> 1-pnorm(0.5,0,1)
[1] 0.309

> 1-pnorm(2,0,1)
[1] 0.0228
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Recall: Result 1 informed us that when X, X, ..., X,, is a random sample from a N '(u, 0?)
population distribution, the sample mean

— 0'2
X ~N (,u, —) .
n
Q: What if the population distribution is something else other than a normal distribution?

What is the sampling distribution of X in this case?
A: We answer this question now, stating one of the most fascinating results in statistics.

Result 2: Suppose X, X, ..., X,, is a random sample from a population distribution with
mean 4 and variance 2. When the sample size n is large, the sample mean

2
YNANQL,%).

The symbol AN is read “approximately normal.” This result is called the Central Limit
Theorem (CLT).

Remark: The CLT implies the sample mean X will behave like a normal random variable
(approximately) regardless of what the population distribution looks like. The population
distribution could be skewed, bimodal, discrete, binary, or whatever. The only mathematical
requirement is that the population variance 0 < oo, which holds for nearly all probability
distributions.

Example 6.3. In a textile production process, the number of defects (per square meter) in
a certain fabric is assumed to follow a Poisson distribution with mean A = 1.5. A quality
control plan involves sampling 50 square meter pieces per day and inspecting them for defects.

Q: What is the population distribution?
A': Define

X = number of defects per square meter of fabric.

The population distribution is Poisson(A = 1.5). This is the distribution of the number of
defects X for each square meter piece of fabric in the population.

Q: What is the sampling distribution of X, the average number of defects for the 50 pieces
observed on a given day?

A: The population mean is ¢ = 1.5 and the population variance is 02 = 1.5. Recall that in
the Poisson distribution, the mean and variance are equal. Now, use Result 2 (CLT):

0.2

YNAN(M,E> — 7~AN(1.5,%> = X ~ AN(1.5,0.03).

Q: Assuming the population distribution is correct, how likely would it be to observe a
sample mean X larger than 2 as part of the daily quality control plan?
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Figure 6.5: Left: Population distribution of X ~ Poisson(A = 1.5). The population mean
i = 1.5 is shown using a solid circle. Right: Approximate sampling distribution of X, the
sample mean of n = 50 observations from the population. The probability P(X > 2) ~ 0.002
is shown shaded.

A: We can calculate

X—-15 2-1.5
P(X>2)=P ( ) ~ P(Z > 2.89) ~ 0.002.

v/1.5/50 g V/1.5/50

> options(digits=1)
> 1-pnorm(2.89,0,1)
[1] 0.002

Question for thought: Because f(f > 2) & 0.002 is so small, what might be true if we
actually observed a sample mean X larger than 2 on any given day? This would certainly
not be expected if the population distribution was correct.

Back to the CLT: Because the CLT only approximates the sampling distribution of X,

that is,
— 0'2
X ~ AN (,U, _> )

n

it is natural to wonder how good the approximation actually is. This depends primarily on
two factors:

1. the sample size n. The larger the sample size, the better the approximation.

2. the amount of skewness in the population distribution. The closer the population
distribution is to being symmetric, the better the approximation.
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Figure 6.6: Population distribution of X ~ exponential(A = 0.05) in Example 6.4. The
population mean p = 20 is shown using a solid circle.

Remark: There is no “one sample size n that fits all” to ensure the CLT will offer a
good approximation (although some textbooks claim n > 30 is the magic threshold). For
population distributions which are symmetric or approximately symmetric, the sample size
n doesn’t have to be that large. For severely skewed distributions or distributions with other
nonstandard shapes, the sample size might have to be larger.

Misinterpretation: Some students (and not-so-smart researchers) will interpret the CLT
as “with a large enough sample, the data should look approximately normal.” This is not
correct. When you are sampling from a population, the population distribution remains
fixed—it doesn’t change. The fact that you have a larger sample simply means that you
have more observations from the population. The CLT is a statement about the sampling
distribution of the sample mean X not the shape of the population from which you are
sampling. The population doesn’t “become more normal” when you have larger samples.

Example 6.4. A clinical trial is being planned to test the effectiveness of semaglutide
for weight loss in pre-diabetic patients. The time X (in days) to enroll a patient from
this population into the trial follows an exponential distribution with A = 0.05 so that the
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Figure 6.7: Approximate sampling distribution of X in Example 6.4.

population mean is

_r_ 20 d
=X " 005~ &
The population variance is
1 1
2= — = = 400 (days)?.
7 TN T (0.05) (days)

The goal is recruit 40 patients.

Q: What is the population distribution?

A: X ~ exponential(A = 0.05). This is the distribution of the time to enrollment for

individual patients in this population.

Q: What is the sampling distribution of X, the sample mean time to enrollment for the 40

patients?
A: Use Result 2 (CLT):

2

XNAN(M,%> — 7~AN<20,4%) — X ~ AN(20,10).

This sampling distribution is shown in Figure 6.7 (above).
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6.4 The t distribution

Recall: Suppose X1, Xo, ..., X,, is a random sample from a N (u, 0%) population distribution.
Result 1 informed us that )
X~N (u, U—) .
n

Therefore, if we standardize X, that is, subtract its mean and divide through by its standard
deviation (standard error), we obtain

_ X
~a/vn

The random variable Z follows a standard normal distribution.

Z ~ N(0,1).

New result: If we replace the population standard deviation o with the sample standard
deviation S in the quantity above, we get a new distribution:

_ X
- S/vn

a t distribution with n — 1 degrees of freedom. This result will be used in the next
chapter when we discuss confidence intervals for a population mean p. More generally, the
t distribution is widely used in statistical inference.

T ~tn—1),

Facts: The t distribution has the following characteristics:

e Its pdf is continuous and symmetric about 0 (just like the standard normal pdf); see
Figure 6.8 (next page).

e [t is indexed by a value v called the degrees of freedom. In practice, v is usually an
integer that depends on the sample size.

e When compared to the standard normal pdf, the ¢ pdf is less peaked and has more
probability (area) in the tails.

o As v — oo, the t pdf approaches the standard normal pdf. For v > 30 or so, it is very
hard to distinguish the ¢ pdf from the standard normal pdf with the naked eye.

MEAN/VARIANCE: If T ~ t(v), then

v—2

The mean is E(T') = 0, provided that v > 1. The variance formula above is only applicable
when v > 2.

PAGE 101



CHAPTER 6 STAT 509

0.4

fr(t)
0.2

0.1

0.0

Figure 6.8: ¢ pdfs with v = 3 and v = 10 degrees of freedom. The N (0,1) pdf is shown as a
reference.

Remark: There is a t pdf formula, but it is complicated and unnecessary for our purposes.
R will compute probabilities and quantiles from any ¢ distribution.

t R CODE: Suppose T ~ t(v).

FO=-PT<0
pt(t,v) qt(p,v)

For example, here are the 95th percentiles of each distribution in Figure 6.8 above:

> options(digits=3)
> qt(0.95,3) # 95th percentile of t(3)

[1] 2.35

> qt(0.95,10) # 95th percentile of t(10)

[1] 1.81

> gnorm(0.95,0,1) # 95th percentile of N(0,1)
[1] 1.64
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6.5 Normal quantile-quantile plots

Recall: In the last chapter, we used quantile-quantile (qq) plots to assess whether the
Weibull(5,n) population distribution was appropriate for a lifetime data set. We can make
similar plots to assess whether a normal population distribution is appropriate.

Importance: We have just learned that when X, X5, ..., X,, is a random sample from a
N (11, 0?) population distribution, the quantity

X —p
S/Vn

In other words, for the ¢ distribution to result, we are assuming the population distribution
(from which the data arise) is normal. Normality is a common assumption with many
statistical inference techniques we will learn going forward. We need to have a way to assess
whether this assumption is reasonable.

T= ~t(n—1).

Recall: We can use qq plots to assess the normality assumption for the observed data in a
sample. Recall how this plot is constructed:

e On the vertical axis, we plot the observed data ordered from low to high.

e On the horizontal axis, we plot the same number of (ordered) quantiles from the
population distribution assumed for the observed data (here, a normal distribution).

Linearity in the qq plot supports the normal population assumption. A strong departure
from linearity (e.g., extreme curvature) refutes it. Remember, we are looking for general
agreement when we examine these plots.

Example 6.1 (continued). We observed a sample of 80 alloy specimens and measured the
compressive strength (in psi) of each specimen:

105 221 183 186 121 181 180 143 97 154 153 174 120 168 167 141
245 228 174 199 181 158 176 110 163 131 154 115 160 208 158 133
207 180 190 193 194 133 156 123 134 178 76 167 184 135 229 146
218 157 101 171 165 172 158 169 199 151 142 163 145 171 148 158
160 175 149 &7 160 237 150 135 196 201 200 176 150 170 118 149

Q: Is it reasonable to assume these data arise from a normal population distribution?
A: We can construct a qq plot for the data to answer this question; see Figure 6.9 (next

page).

e The plot reveals some minor departures in both tails (lower and upper), but nothing
that is too extreme.

e The plot is mostly supportive of the normality assumption for the population of alloy
specimens; at least, there isn’t strong evidence to refute normality here.
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Figure 6.9: Normal quantile-quantile plot of the alloy strength data in Example 6.1.

Example 6.5. Arsenic (As) is a chemical element found naturally in ground water. Exces-
sive levels may result from contamination caused by hazardous waste or by industries that
make or use arsenic. Environmental engineers sampled n = 102 water wells in Texas and
measured the arsenic concentration X (in parts per billion, ppb) for each well. The observed
data are shown below:

176 104 135 4.0 199 16.0 12.0 122 114 127 3.0 103 214 194 9.0
6.5 101 87 97 64 97 630 155 107 182 75 6.1 6.7 69 08
73.5 120 28.0 126 94 6.2 153 73 10.7 159 58 1.0 86 1.3 137
28 24 14 29 131 13 92 117 45 10 12 08 10 24 44
22 29 36 25 18 59 28 17 46 54 30 31 13 26 14
23 15 40 18 26 34 14 107 182 7.7 65 122 101 6.4 10.7
6.1 08 120 281 94 62 73 97 621 155 64 9.5

Q: Is it reasonable to assume these data arise from a normal population distribution?
A: Figure 6.10 (next page) shows the histogram and the normal qq plot for these data.

e The histogram shows a strong skewed right shape with multiple outliers, which we
know doesn’t align with the normal distribution.
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Figure 6.10: Left: Histogram of the n = 102 arsenic concentrations in Example 6.5. Right:
Normal quantile-quantile plot.

e The appearance of the histogram appears to align more with an exponential or gamma
population distribution.

e Not surprisingly, we see strong disagreement in the observed data and the normal
quantiles in the qq plot. Normality is not a good assumption for these data.

Robustness: We know when X, X, ..., X, is a random sample from a N'(u, 0?) population
distribution, the quantity

X —up
- S/vn
Q: What if X1, Xs, ..., X,, is a random sample from some other population distribution (e.g.,
Poisson, exponential, etc.)? Does the sampling distribution for 7" above still hold?
A: No, it doesn’t, but it may be approximately correct even when the population distribution
is not normal. The approximation is best when

T ~tin—1).

e the sample size n is larger

e the population distribution is more symmetric.

Terminology: In statistical inference, we say that a result or method is robust when
the accuracy of the result (or success of the method) does not depend critically on the
underlying assumptions. The ¢ sampling distribution result above is robust to the normality
assumption for the population distribution. This means the normality assumption isn’t that
critical, especially when the two conditions above are met.
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7 One-Sample Inference

Preview: In this chapter, we will discuss one-sample inference for three population param-
eters:

e a population mean p (Section 7.1)
e a population variance o? (Section 7.2)

e a population proportion p (Section 7.3).

Remember these quantities describe an entire population, so they are unknown. Our goal is
to use sample information to estimate them. This is what statistical inference is all about.
To “infer” means to “draw a conclusion about something based on evidence.”

Example 7.1. A general contractor buys standard-sized bricks from a local brick supplier.
The manufactured specifications call for each brick to weigh 4.5 lbs, but there has been
recent concern on the contractor’s part the supplier is selling bricks that do not conform to
this specified weight on average. The contractor asks for a sample of bricks to be selected
and each brick weighed, producing the data below.

454 4.64 458 4.78 458 4.62 455 4.63 451 449 450 451
4.63 447 436 4.61 453 445 426 440 448 4.63 447 4.46
457 441 450 4.62 450 461 449 479 439 470 4.39 445

There are n = 36 bricks in the sample, but this is a small collection when compared to
the tens of thousands of bricks produced each day by the supplier. We can think of the
population here as all bricks manufactured by the supplier using the current production
process.

e One statistical inference question is, “What are the plausible values of the population
mean brick weight p that are consistent with the data in the sample?” Is 4.5 lbs
included within this range of plausible values? If not, then it would appear there is
something wrong with the brick supply in terms of the average weight.

e Another equally important question deals with variability. The target specification is
4.5 Ibs, but we notice from the data above there is variation in the sample observations
(some weights are below 4.5 lbs; some are above). Is there “too much” weight variation
in the population of all bricks? A range of plausible values of o2, the population
variance, would be helpful in assessing whether there is excessive weight variability in
the brick supply.

Statistical formulation: How do we answer these questions? That is what we will do
in this chapter. We begin by assuming a random sample of observations Xi, X»,..., X, is
available from a population described by a normal distribution with mean p and variance
o?. Our goal is to use the evidence in the sample to formulate (or “to infer”) a range of

plausible values for these population parameters.
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7.1 Confidence interval for a population mean u

Recall: From the last chapter, we learned that if X;, X, ..., X|, is a random sample from a
N (1, 0?) population distribution, then

_ X
-~ S/Vn

a t distribution with n — 1 degrees of freedom. This describes the sampling distribution of
T, that is, how T will vary probabilistically when sampling from a N (i, %) population.

T

~tn—1),

a/2 a/2

Figure 7.1: t pdf with n — 1 degrees of freedom. The lower /2 quantile —¢,,_1 , 2 and the
upper a/2 quantile ¢,,_; o/» are shown using solid circles.

Notation: We introduce notation that identifies quantiles from a t(n — 1) distribution.
Define

tn—1a/2 = upper /2 quantile from t(n — 1) pdf
—tp-1a/2 = lower a/2 quantile from ¢(n — 1) pdf.

Because the t(n — 1) pdf is symmetric about zero, these two quantiles are equal in absolute
value (the upper quantile is positive; the lower quantile is negative); see Figure 7.1. For
example, if n = 10 and a = 0.05, then

t9,0.025 ~ 2.26

—t9707025 ~ —2.26.

We can obtain quantiles like these using the qt function in R:

PAGE 107



CHAPTER 7 STAT 509

> options(digits=3)

> qt(0.975,9) # upper 0.025 quantile
[1] 2.26

> qt(0.025,9) # lower 0.025 quantile
[1] -2.26

Derivation: For any value of o, 0 < a < 1, we can write

l—-a = P (_tn_]_,a/Q <T< tn_lya/g) <— this comes from Figure 7.1.
X —yp
= P|—th1a2<—=—=<ti1a
( S ! /2)
S S
= P (—tn—m/z% <X-—pu< tn—la/Z%)
S S
= P (tn—1,a/2% >p—X > tn—la/QT)
— S S
= P X+t qapn—=>u>X—t, 140/n0—
( +tn-1, /2\/5 H 1 /Qﬁ)
— S — S
= P(X—t,qoap—=<pu<X+t,1ap0—].
We call g g
7_tn— af27 —> 7 tn— a2 —
(%= trsar e Tt )

a 100(1 — a)% confidence interval for the population mean p. This is written more
succinctly as

5
v

Y + tnfl,oz/Q

Example 7.1 (continued). Calculate a 95% confidence interval for the population mean
brick weight p using the sample data in Example 7.1:

454 464 458 4.78 4.58 4.62 455 4.63 451 449 450 4.51
4.63 447 436 4.61 453 445 426 440 448 4.63 447 4.46
4.57 441 450 4.62 450 4.61 449 479 439 470 4.39 4.45

Sample statistics: We use R to first find the sample mean T and the sample standard
deviation s for these data:

> options(digits=3)

> mean(bricks) # sample mean

[1] 4.53

> sd(bricks) # sample standard deviation
[1] 0.113
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Therefore, we have

4.53 lbs
0.113 lbs.

s
L

Q

Quantiles: With a sample of size n = 36, we use the #(35) distribution. Note that

95% confidence = a=0.00 = «a/2 =0.025 = t350.025 ~ 2.03.

> qt(0.975,35)
[1] 2.03

t(35)

0.95

0.025 0.025

A 95% confidence interval for the population mean u is

0.113
fitn_l,m% — 4.53+2.03 (ﬁ) — (4.49,4.57).

Interpretation: We are 95% confident the population mean brick weight u is between 4.49
and 4.57 1bs.

Implementation in R: We can calculate confidence intervals for a population mean p using
the t.test function in R:

> options(digits=3)
> t.test(bricks,conf.level=0.95)$conf.int
(1] 4.49 4.57

Using this function avoids the piecemeal approach outlined above, although it is helpful to
see all the parts that go into the calculation of the interval.
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Discussion: We now make several remarks about the confidence interval

— S
X £ tn—l,a/2

N

for a population mean . Many of these remarks apply to other types of confidence intervals
we will learn later.

First, note the form of the interval:

point estimate 4+ quantile X standard error.
—_— —— ——
X tn—l,a/Q S/\/ﬁ

Other confidence intervals we will learn have this same form.
Here is how we interpret the interval:

“We are 100(1 — «)% confident the population mean g is in this interval.”
Unfortunately, the word “confident” does not mean “probability.”

— The word “confidence” means if we sampled from the population over and over
again, each time calculating a 100(1 — «)% confidence interval for the population
mean g, then 100(1 — «)% of the intervals we calculated would contain .

In other words, “confidence” refers to “long term behavior” of many intervals; not
probability for the interval we calculated. For example, in Example 7.1, it would not
be correct to write

P(4.49 < u < 4.57) =0.95

or say “the population mean brick weight p is between 4.49 and 4.57 Ibs with probability
0.95.” Remember, the population mean p is a fixed number—it isn’t random. It does
not make sense to assign probabilities to events that are not random.

Unfortunately, there is no way to tell if the confidence interval we calculated contains
i or not. Remember, p is a population-level parameter so it is unknown. The only
way we could determine if the interval contains p would be to observe every individual
in the population. Of course, in this unrealistic scenario, we could determine p exactly
so there would be no need to estimate it with a confidence interval.

Standard confidence levels are

— 90% (a = 0.10)
— 95% (a=0.05) <— the most common
- 99% (a =0.01)
The larger the confidence level, the larger the “long term percentage” of intervals

that will contain the population mean p. Larger confidence levels will produce wider
intervals to guarantee this.
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e We have all heard the aphorism, “There is no free lunch.”

— If you use a larger confidence level, then what you get is a larger percentage of
confidence intervals that will contain . The price you pay is that your interval
will be wider and, therefore, less precise.

— Smaller confidence levels will produce a narrower interval which is more precise.
The price you pay is that a smaller percentage of confidence intervals will actually
contain .

— Therefore, when writing confidence intervals, there is always a tradeoff between

“confidence” and “precision.”

Assumptions: Statistical inference procedures (like confidence intervals) are derived from
certain assumptions. It is important to know what these assumptions are, how critical they
are, and how to check them. The confidence interval

— S
X+ tn—l,a/2

NG
for a population mean p is created under the following assumptions:
1. X4, Xs,..., X, is a random sample from the population

2. The population distribution is A (u, 02).

It is under these assumptions that

X —pu
S/vn

and this was the starting point to derive the interval above.

T = ~t(n—1),

e The random sampling assumption is critical. We must assume all observations are
coming from the same population distribution and that the observations are mutually
independent. This ensures our sample will be representative of the population.

e The normality assumption for the population is not so critical. Remember, we learned
in the last chapter the sampling distribution result for 7" above is robust to the
normality assumption for the population.

— This means we can still use the confidence interval formula above even when the
normal population assumption does not hold exactly.

— We can check the normality assumption by using qq plots with the observed
sample. As long as there are no serious departures from normality detected
in the plot, the confidence interval above will likely operate close to the nominal
confidence level.

— Even if there are serious departures from normality, the effect of this is usually
small when the sample size n is large. This is a consequence of the CLT.
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Figure 7.2: Left: Histogram of the n = 36 brick weights in Example 7.1. Right: Normal
quantile-quantile plot.

Brick weight data: The qq plot for the brick weight data in Figure 7.2 (above, right)
does not reveal any serious departures from normality. We can feel comfortable reporting
(4.49,4.57) as a 95% confidence interval for u, the population mean brick weight.

7.2 Confidence interval for a population variance o>

Remark: In some situations, we aren’t concerned with the mean of the population but the
variance instead. This is especially true in manufacturing settings. Too much variation can
lead to inconsistent product quality and reduced customer satisfaction. On the other hand,
small levels of variation are associated with predictability. Ensuring predictable results in
production and construction is essential for meeting specifications and maintaining a positive
reputation with customers.

New result: If X|, X5, ..., X,, is a random sample from a N (i, 0?) population distribution,

then ( 1)52
n—
Q=-—F5—~x(n—-1),

a x? distribution with n — 1 degrees of freedom. This describes the sampling distribution
of Q, that is, how @ will vary probabilistically when sampling from a A (u, 0?) population.

g

Importance: The x? distribution (and this sampling distribution result above) will be used
to develop a confidence interval for the population variance o?.
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Figure 7.3: x? pdfs with different degrees of freedom.

Facts: The y? distribution has the following characteristics:

e Its pdf is continuous, skewed right, and its support is positive values only (no negative
values); see Figure 7.3 above.

e [t is indexed by a value v called the degrees of freedom. In practice, v is usually an
integer that depends on the sample size.

e The 2 pdf formula is unnecessary for our purposes. R will compute probabilities and
quantiles from any x? distribution.

x> R CODE: Suppose Q ~ x*(v).

Folq) = P(Q < q) D
pchisq(q,v) qchisq(p,v)
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a/2 a2

Figure 7.4: x? pdf with n — 1 degrees of freedom. The lower a/2 quantile Xi_m /o and the
upper «/2 quantile Xifmfa /o Are shown using solid circles.

Notation: We introduce notation that identifies quantiles from a y?(n — 1) distribution.
Define

Xi—1,1—a/2 = upper a/2 quantile from y*(n — 1) pdf
Xifl,a/Q = lower «/2 quantile from x*(n — 1) pdf.

For example, if n = 10 and o = 0.05, then

X3,0.975 ~ 19.02
2.7.

Q

2
X0,0.025

We can obtain quantiles like these using the qchisq function in R:

> options(digits=4)

> qchisq(0.975,9) # upper 0.025 quantile
[1] 19.02

> gqchisq(0.025,9) # lower 0.025 quantile
[1] 2.7
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Derivation: For any value of a, 0 < o < 1, we can write
l-a = P (ngfl,a/2 <Q< Xiq,ka/z) <— this comes from Figure 7.4.

(n—1)5?
= P (X?z—l,a/2 < 2 < X?z—l,l—a/Q

1 2 1
= P > U > )

X?%fl,a/Z (n—1)52 Xifl,lfa/Z

N R (n—1)52>

2 2
Xn—1,a/2 Xn—1,1-a/2

_ p(=nst (n—1)52>‘

2 2
Xn—1,1-a/2 Xn—1,a/2

This shows

((n —1)S? (n-— 1)52)

Xn-11-a/2 Xn-1la/2

is a 100(1 — a)% confidence interval for the population variance o>

interval in the same way:

. We interpret the

2

“We are 100(1 — a)% confident the population variance o is in this interval.”

Note: A 100(1 —a)% confidence interval for the population standard deviation o arises
from simply taking the square root of the endpoints of the 0% interval.

(n—1)5? (n—1)52
X?zfl,lfa/Q 7 X?Lfl,a/Q

is a 100(1 — )% confidence interval for the population standard deviation o.

e That is,

e This is usually preferred over the o? interval, because standard deviation measures

variability in terms of the original units (e.g., dollars, inches, days, etc.).

e Recall the variance o2

is harder to interpret.

is measured in squared units (e.g., dollars?, in?, days?, etc.) and

Example 7.2. A furniture company sells items designed for the customer to assemble him
or herself. One item uses screws which are supposed to have a mean diameter of 1.200 cm.
Periodically, quality control is performed to assess whether there is excessive variation in
various screw dimensions. Specifications mandate the population standard deviation o of
the diameters should not exceed 0.005 cm. Otherwise, there is excessive variation in the
production of this critical part which could lead to difficulty in construction and customer
dissatisfaction.
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Below are diameter measurements for a random sample n = 40 screws:

1.194 1.177 1.204 1.195 1.209 1.208 1.210 1.206 1.187 1.187
1.219 1.198 1.196 1.194 1.194 1.208 1.207 1.201 1.214 1.203
1.198 1.195 1.207 1.18 1.189 1.191 1.204 1.199 1.196 1.212
1.198 1.188 1.203 1.199 1.211 1.215 1.202 1.206 1.212 1.189

Q: Find a 99% confidence interval for the population standard deviation o.
A: We will first find a 99% confidence interval for the population variance o2 and then take
the square root of each interval endpoint.

Sample statistics: We use R to first find the sample variance s? for these data:

> options(digits=5)
> var(screws) # sample variance
[1] 8.9372e-05

Therefore, we have
s? 2 8.9372 x 107° or 0.000089372 cm?.

I'm retaining many digits due to the small numbers here (this will mitigate the impact of
rounding error later).

0.005

19.996 65.476

Quantiles: With a sample of size n = 40, we use the x?(39) distribution. Note that

{ X:Q«zg,o.oos) ~ 19.996

99% confidence — a =0.01 = «a/2=0.006 = 5
X39,0.905 ~ 65.476
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> qchisq(0.005,39)
[1] 19.996
> qchisq(0.995,39)
[1] 65.476

Therefore, a 99% confidence interval for the population variance o? is

65.476 ’ 19.996
= (0.00005323,0.00017431).

((n—1)52 (n—1)s2) . (39(0.000089372) 39(0.000089372))

Xifl,lfa/; X?Lfl,a/Q
Interpretation: We are 99% confident the population variance o2 of the screw diameters

is between 0.00005323 and 0.00017431 cm?.

A 99% confidence interval for the population standard deviation o is

(+v/0.00005323, v/0.00017431) = (0.007,0.013).

Interpretation: We are 99% confident the population standard deviation o of the screw
diameters is between 0.007 and 0.013 cm.

Discussion: This analysis suggests there is too much variation in the process producing
the screws. The confidence interval consists entirely of values which are larger than 0.005
cm. It would be advised to revisit the production process and see if we can find assignable
causes of variability—those causes which are inflating the variation in the diameters beyond
the acceptable upper limit of 0.005 cm.

Implementation in R: There is no handy internal function in R that calculates a confidence
interval for a population variance o2, so I wrote one. The function var.ci below asks the
user to input the data set (data) and specify the confidence level.

var.ci = function(data,conf.level=0.99){
df = length(data)-1
chi.lower = qchisq((1-conf.level)/2,df)
chi.upper = gqchisq((1+conf.level)/2,df)
s2 = var(data)
c(df*s2/chi.upper,df*s2/chi.lower)
}

Applying this function to the screw diameter data, we get the output

> options(digits=5)

> var.ci(screws,conf.level=0.99) # CI for population variance

[1] 5.3234e-05 1.7431e-04

> options(digits=1)

> sqrt(var.ci(screws,conf.level=0.99)) # CI for population standard deviation
[1] 0.007 0.013
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Figure 7.5: Left: Histogram of the n = 40 screw diameters in Example 7.2. Right: Normal
quantile-quantile plot.
Assumptions: The confidence interval

(n—1)S? (n—1)5?

X?Lfl,lfa/Q’ X?zfl,a/Q

is created under the following assumptions:

for a population variance o2

1. Xy, Xs, ..., X, is a random sample from the population

2. The population distribution is AN (u, 02).

It is under these assumptions that

(n—1)52

Q: 2 NXZ(n_l)a

g

and this was the starting point to derive the interval above.

e The random sampling assumption is critical. We must assume all observations are
coming from the same population distribution and that the observations are mutually
independent. This ensures our sample will be representative of the population.

e The normality assumption for the population is also critical. The sampling distribution
result for () above is not robust to departures from the normality assumption for the
population.
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This means the confidence interval for o (and therefore the one for o too) is only
meaningful when the population is N (i, 0%). Departures from normality could cause
the confidence intervals for o2 and o to be misleading.

This is different than what we learned with a confidence interval for a population mean
4 using the t distribution. This interval is robust to the normality assumption.

Screw diameter data: The qq plot for the screw diameter data in Figure 7.5 (last page,

right)

does not reveal any serious departures from normality. We can feel comfortable re-

porting (0.007,0.013) as a 99% confidence interval for o, the population standard deviation

goft

7.3

he diameters.

Confidence interval for a population proportion p

Scenario: We now switch gears and focus on estimating a population proportion p. This
parameter is relevant when we measure a binary characteristic on each individual. Here are

some

BRI

p

examples:

proportion of defective circuit boards

proportion of power supply units requiring service during a warranty period
= proportion of customers who are satisfied
= proportion of payments received on time

= proportion of patients who respond to treatment.

To start our discussion, we need to recall the Bernoulli trial assumptions for each individual
in the population:

1.
2.

3.

each individual is categorized as a “success” or “failure”
the individuals are independent

the probability of “success” p is the same for every individual in the population.

In our examples above,

“success” — circuit board defective

“success” — PSU requires service during a warranty period
“success” — customer satisfied

“success” — payment received on time

“success” — patient responds to treatment.

The parameter p is the proportion of “successes” in the population. Our goal is to estimate
p with a confidence interval.
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Recall: A binomial distribution arises when we observe a fixed number of Bernoulli trials
and record
X = number of successes (out of n).

e In a statistical inference context, we envision each individual (e.g., circuit board, PSU,
customer, payment, patient, etc.) in a random sample as a “trial,” and we record a
“success” or “failure” on each individual in the sample.

e If p is the proportion of “successes” in the population, then X ~ b(n,p).

Point estimation: If X is the number of “successes” in a random sample of size n, then

X
p=—
n

is the sample proportion. This is simply the proportion of successes in the sample. We
will use p as a point estimator for the population proportion p. Mathematics can show these
two results:

E(@) = »p
p(l—p)'

The first result says the sample proportion p is an unbiased estimator of the population
proportion p. From the second result, we can find the standard error

self) = V) = | "

Recall the standard error of a point estimator (like p) measures how much variation is
attached to it.

Important: Knowing the sampling distribution of p is critical if we are going to develop a
confidence interval for p. We appeal to an approximation (conferred by the CLT) which says

ﬁNAN<p, p(l—_p)),

when the sample size n is large. Standardizing p, that is, subtracting the mean and dividing
through by the standard deviation (standard error), we get

7= PP N,
p(1 —p)
n

an approximate standard normal distribution. We will use this result to write a confi-
dence interval for p.
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Figure 7.6: Left: Histogram of the 10,000 sample proportions p when n = 100 and p = 0.30.
Right: n = 1000 and p = 0.30. A normal pdf has been superimposed over each histogram.
Density histograms have been used so that total histogram areas equal one.

Monte Carlo simulation: Before we develop the confidence interval for p, you should be
reasonably convinced the sampling distribution result for p on the previous page is correct
(at least the approximate normality part).

e The histograms in Figure 7.6 (above) each show 10,000 simulated values of p when
the population proportion is p = 0.30; i.e., 30% of individuals in the population are
“successes.”

e The normal approximation to the histogram when n = 100 (left) is pretty good. The
approximation is outstanding when n = 1000 (right). This illustrates how the normal
approximation for the sampling distribution of p is better for larger sample sizes.

e Notice how the histograms of p are centered at p = 0.30. This is because p is an
unbiased estimator.

e Also notice how the variation in the sampling distribution is much smaller when the
sample size n = 1000 (right). This can be seen also through standard error calculations:

Left: se(p) % ~ 0.046
0.30(0.70
Right: se(p) % ~ 0.014.
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a/2 a/2

Figure 7.7: N(0,1) pdf. The lower /2 quantile —z,/, and the upper /2 quantile z,/, are
shown using solid circles.

Notation: We introduce notation that identifies quantiles from a A(0, 1) distribution. De-
fine

Zoj2 = upper a/2 quantile from N(0,1) pdf
—za2 = lower a/2 quantile from N(0,1) pdf.

Because the A/(0,1) pdf is symmetric about zero, these two quantiles are equal in absolute
value (the upper quantile is positive; the lower quantile is negative); see Figure 7.7. For
example, if a = 0.05, then

20.025 ~ 1.96

—20.025 ~ —1.96.
We can obtain quantiles like these using the gnorm function in R:

> options(digits=3)
> gqnorm(0.975,0,1)
[1] 1.96
> gnorm(0.025,0,1)
[1] -1.96
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Derivation: For any value of a, 0 < o < 1, we can write

l—a = P(—242<Z < zy2) <— this comes from Figure 7.7.
~~ —Zaj2 < Ii)p) < Za/2 +— using an estimate of the standard error.
_ P(_Za/2 /ﬁ —23 <F—p< zan /p(l—p))
= P<za/2 il - ﬁ>>p p>—za/2 @)
_ P( Y (LU Py >>
_ P< P — 2oy ﬂln_ﬁ)<p<ﬁ+za/2\/ p(l - )>

We call
_ T pl—p
(%? — Za/Q Zzg_____zzz’ ]9'+_/Za/2 Zzg_____zzzj)
n n

a 100(1 — a)% confidence interval for the population proportion p. This is written more

succinctly as
N P0—p
P Zaj2 g

We interpret the interval in the same way:
“We are 100(1 — «)% confident the population proportion p is in this interval.”

Discussion: Note the familiar form of the interval:

point estimate + quantile X standard error.
N—— ——

p p(1—p)

p Za/2

This interval should be used only when the sample size n is “large.” A common rule of
thumb is to require

n

)

=)
AVARLY,

5
n(l—p) 5.

Under these conditions, the CLT should adequately describe the sampling distribution of p,
thereby making the confidence interval formula above approximately valid.

=
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Example 7.3. One source of water pollution is gasoline leakage from underground storage
tanks. In Pennsylvania, a random sample of n = 74 gasoline stations is selected from the
state and the tanks are inspected; 10 stations are found to have at least one leaking tank.

Q: Calculate a 95% confidence interval for p, the population proportion of gasoline stations
in Pennsylvania with at least one leaking tank.
A: In this example, we interpret

e gasoline station = “trial”

e at least one leaking tank at station = “success.”

Note: There are about 10,000 gas stations in Pennsylvania. Therefore, p represents the
proportion of stations with at least one leaking tank for this entire population. We have a
random sample of 74 stations from this population.

Sample statistics: The sample proportion of stations with at least one leaking tank is

5= 2 0135
LR 7

Quantiles: We use the N(0, 1) distribution. Note that

95% confidence — a =0.06 = «a/2=0.025 = 2p025 ~ 1.96.

> options(digits=3)
> gnorm(0.975,0,1)
[1] 1.96
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A 95% confidence interval for the population proportion p is

0.135(1 — 0.135)
74

0.135 = 1.96\/ — (0.057,0.213).
Interpretation: We are 95% confident the population proportion p of stations in Pennsyl-
vania with at least one leaking tank is between 0.057 and 0.213.

CLT approximation check: We have

. 10
np = T4 (ﬁ) =10
10

n(l—p) = 74<1_ﬁ) = 64.

Both of these are larger than 5, so we can feel comfortable using this confidence interval
formula.

Implementation in R: There are various R functions and packages which produce confi-
dence intervals for proportions, but they are far more elaborate than what we need. I wrote
a simple function p.ci that automates the calculations. It requires the user to input the
number of successes (x), the number of trials (n), and the confidence level:

p.ci = function(x,n,conf.level=0.95){
est = x/n
se = sqrt(est*(l-est)/n)
z.upper = gnorm((l+conf.level)/2,0,1)
c(est-z.upper*se,est+z.upper*se)

}
Using this function with = 10 and n = 74 in Example 7.3, we get

> options(digits=2)
> p.ci(10,74,conf.level=0.95)
[1] 0.057 0.213

7.4 Sample size determination

Importance: In the planning stages of an experiment or observational study, we need to
first determine how many individuals should be sampled from a population. For example,

e We want to write a 90% confidence interval for the population mean time to part
failure. How many parts should be sampled?

e We want to write a 95% confidence interval for the population proportion of patients
who respond to a treatment. How many patients should we recruit?
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The sample size n determines how precise confidence intervals will be. Larger sample sizes
will give narrower (more precise) confidence intervals. Of course, sampling from a population
always costs money, and larger samples will usually cost more too (think of the Pennsylvania
gas station example). We will discuss statistical issues associated with sample size determi-
nation. There is a complementary set of practical issues like cost, time spent in sampling,
personnel training, and other factors, which are also important.

Sample size for a population mean: Recall that if X7, X5, ..., X, is a random sample
from a N (p, 0?) population distribution, then

S

NLD
is a 100(1 — @)% confidence interval for the population mean . This interval is formed by
taking a point estimate X and then adding/subtracting

7 + tn—l,a/2

S

tn—l,a/2 \/ﬁ

We call this quantity the margin of error associated with the confidence interval. It consists
of two parts:

e the quantile t,,_1 /2, which depends on the confidence level 100(1 — a))%

e S/y/n, which is a point estimate of the population standard error o/y/n. Note the
population standard error depends on the population standard deviation ¢ and the
sample size n.

Recall the ¢ distribution is similar to the standard normal distribution A(0,1), especially
when the degrees of freedom (n — 1) is larger. Therefore, the margin of error above should

be approximately equal to
o

7

(57)

n= .

B

This is the sample size which will guarantee a prescribed confidence level 100(1 — «)% and
a margin of error B.

B = Za/g

Solving this equation for n, we get

Note: To use the formula, we have to specify three things:

1. the confidence level 100(1 — «)%; this determines the N(0,1) quantile zq .

2. the margin of error B; note the interval length is twice the margin of error. Therefore,
when you specify B, you are specifying how narrow (how precise) you want the interval
to be.
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3. the population standard deviation o. This is the hardest part, because ¢ is a population-
level parameter (so it is unknown). Generally, an “estimate” or “guess” is provided
here. An upper bound for ¢ is used if you want to be conservative. This will provide
a sample size larger than what is actually needed.

Example 7.4. In a biomedical experiment, we would like to estimate the population mean
time to death p for healthy rats (in days) when given a toxic substance. The research
protocol requires a 95% confidence interval for p with a margin of error equal to B = 2 days.
From past studies, the time to death after administration of the toxin has been modeled by
a normal distribution with standard deviation o = 8 days.

Q: How many rats should we use for the experiment?
A: With zg05/2 = 20025 & 1.96, B = 2, and o = 8, the minimum sample size is

2
za/ga)Q 1.96 x 8
=(——) =(—— | =615.
n ( ~ ( : 61.5

We would need a random sample of n = 62 rats to achieve these goals. This will produce
a 95% confidence interval for p with a margin of error no larger than B = 2 days (total
interval length no larger than 4 days).

Remark: We could weaken our requirements to (a) a lower 90% confidence level and (b) a
margin of error of B = 3 days, which is less precise. The minimum sample size is now

20/20\ 2 1.65 x 8
" < B ) ( 3 ) !

We would need to sample only n = 20 rats to meet these weaker requirements.

Sample size for a population proportion: A 100(1 — @)% confidence interval for a
population proportion p is
. p(l —p,
P =E Zas2 g

The margin of error associated with the interval

p(1—p 1—
Za /2 u is an estimate of z, /2 u
n

A small problem arises, namely, the (population-level) margin of error

p(1 —p)

Zaf2 n

depends on p, which is what we are trying to estimate with a confidence interval. The
“workaround” is to elicit a “guess” of what p is, say pg, and use

po(1 — po)

B:ZQ/Q n
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instead. Solving this equation for n, we get

Zoc/2>2
= 1— .
n ( B Po( po)

This is the sample size which will guarantee a prescribed confidence level 100(1 — )% and
a margin of error B.

Remark: If there is no sensible guess for p available, use py = 0.5. The resulting sample size
n will be as large as possible. Put another way, using py = 0.5 gives the most conservative
solution. This is true because

n = n(py) = (zg2>2190(1 — Do),

when viewed as a function of py, is maximized when py = 0.5. However, the resulting sample
size could be very large, perhaps much larger than is practical to use.

Example 7.5. You have been asked to estimate the proportion of parts in a certain man-
ufacturing process that need to be “scrapped;” e.g., the part is so defective that it can not
be used or reworked. If this proportion is larger than 10 percent, it will be deemed by man-
agement to be an unacceptable continued operating cost and a substantial process overhaul
will be performed. Past experience suggests the scrap rate is about 5 percent, but recent
information suggests this rate may be increasing.

You would like to write a 95% confidence interval for p, the population proportion of parts
that will be scrapped, with a margin of error equal to B = 0.02.

Q: How many parts should you ask to be sampled?
A: For 95% confidence, we use 20.05/2 = Z0.025 ~ 1.96. In providing an initial guess py, we
have different options; we could use

po = 0.05 (historical scrap rate)
po = 0.10 (“critical mass” value)
po = 0.50 (most conservative choice).

For these choices, we have

1.96\ 2

_ (W) 0.05(1 — 0.05) ~ 457
1.96\2

_ (W) 0.10(1 — 0.10) ~ 865
1.96\ 2

_ (W) 0.50(1 — 0.50) = 2401.

This shows how the “guess” py can have a substantial impact on the final sample size calcu-
lation. Furthermore, it may not be practical to sample 2,401 parts, as would be required by
the most conservative approach.
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