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2 Probability

2.1 Introduction

Terminology: Probability is a measure of one’s belief in the occurrence of a future event.
Probability is called “the mathematics of uncertainty.”

Examples: Here are some events we might want to assign a probability to (i.e., to quantify
the likelihood of occurrence):

• tomorrow’s temperature exceeding 80 degrees

• getting a flat tire on my way home today

• a new policy holder making a claim in the next year

• you being diagnosed with prostate/cervical cancer in the next 20 years

• a new patient developing an addiction to opioids

• President Trump winning re-election in 2020.

Approaches: How do we assign probabilities to events like these and other events?

1. Subjective approach

• based on prior experience, subject-matter knowledge, feeling, etc.

• may not be scientific

2. Relative frequency approach

• requires the ability to observe the occurrence of an event (and its non-occurrence)
repeatedly under identical conditions

• can be carried out using simulation (see Examples 2.1, 2.2, and 2.3)

3. Axiomatic/Model-based approach

• grounded in set theory/mathematics

• we will take this approach

Example 2.1. We illustrate how the relative frequency approach works using simulation.
Suppose we flip a coin and observe the outcome; the sample space is

S = {H,T}.

Let A = {T}, the event that a “tail” is observed. How might we assign probability to the
event A? Suppose we flip the same coin over and over again and record the fraction of
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Figure 2.1: Relative frequency of coin flips resulting in “tails” plotted over 10000 flips. A
dotted horizontal line at 0.5 has been added.

times A occurs. This fraction is called the relative frequency. Specifically, if we flip the
coin n times and let n(A) denote the number of times A occurs, then the relative frequency
approach to probability says

P (A) ≈ n(A)

n
.

The symbol P (A) is shorthand for “the probability that A occurs.”

Illustration: I used R to simulate this experiment n = 10000 times while assuming the coin
is fair; i.e., flipping the same fair coin 10000 times. Figure 2.1 plots the relative frequencies
over the 10000 flips. The number of tails observed in this simulation was 5040.

> sum(flip)

[1] 5040

Therefore, we would assign
P (A) = 0.5040

on the basis of this simulation. If we repeated the simulation, we would get different answers
most likely. In fact, I did this 5 more times and got 5023, 5033, 5016, 5061, and 4976.
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Remark: In general, the relative frequency approach to probability says that n(A)/n will
“stabilize” around P (A) as n increases. Mathematically,

lim
n→∞

n(A)

n
= P (A).

Interesting: John Edmund Kerrich (a British mathematician) performed a similar exper-
iment. He flipped an actual fair coin n = 10000 times while in an internment camp in
Nazi-occupied Denmark in the 1940’s (he did not have R!). He observed 5067 heads out of
10000 flips, offering empirical evidence of why the relative frequency approach “works” (as
we have just done). �

Example 2.2. The matching problem. Suppose M men are at a party, and each man is
wearing a hat. Each man throws his hat into the center of the room. Each man then selects
a hat at random. What is the probability at least one man selects his own hat; i.e., there is
at least one “match”? Define

A = {at least one man selects his own hat}.

Let’s use simulation to estimate P (A) like we did in Example 2.1.

Illustration: I used R to perform the “hat matching” experiment n = 10000 times while
assuming the party consisted of M = 10 men. The event A occurred in 6364 of the simulated
parties:

> sum(event)

[1] 6364

Therefore, we would assign
P (A) = 0.6364

on the basis of this simulation. The plot of relative frequencies is shown in Figure 2.2 (next
page).

Curiosity: What happens if we grow the size of the party? I performed the same simulation
with M = 100, M = 1000, and M = 10000 men and obtained the following results:

M n(A) n P (A) = n(A)/n
10 6364 10000 0.6364
100 6342 10000 0.6342
1000 6300 10000 0.6300
10000 6351 10000 0.6351

Interesting: In general, for a party with M men, the probability of at least one match is

P (A) = 1−
M∑
k=0

(−1)k

k!
.

PAGE 3
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Figure 2.2: The matching problem with M = 10 men. Relative frequencies plotted over
10000 trials.

Letting the party grow large without bound is equivalent to letting M →∞. From calculus,

lim
M→∞

[
1−

M∑
k=0

(−1)k

k!

]
= 1−

∞∑
k=0

(−1)k

k!
= 1− e−1 ≈ 0.6321.

Remark: This is an example where intuition usually leads one astray. Some students would
reason that as the number of men M increases, the chance of an individual match (1/M)
decreases to 0 so P (A) will also approach 0. Other students would reason that because M is
large, “hat matching” overall becomes easier so P (A) should approach 1. Neither argument
is correct and, in fact, the correct answer lies somewhere in the middle. �

Example 2.3. The birthday problem. In a class of M students, what is the probability
there will be at least one shared birthday? Define

A = {at least one shared birthday}.

Let’s use simulation to estimate P (A). To make this example concrete, assume that there
are 365 days in a year and that there are no siblings (e.g., twins, triplets, etc.) in the class.
On July 1, 2018, there were M = 50 students enrolled in this class, so we will use this.

PAGE 4
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Figure 2.3: The birthday problem with M = 50 students. Relative frequencies plotted over
10000 trials.

Illustration: I used R to perform the “shared birthday” experiment n = 10000 times while
assuming the class consists of M = 50 students. The event A occurred in 9697 of the
simulated parties:

> sum(event)

[1] 9697

Therefore, we would assign
P (A) = 0.9697

on the basis of this simulation. The plot of relative frequencies is shown in Figure 2.3.

Interesting: In general, for a class with M students, the correct answer is

P (A) = 1−
M !
(

365
M

)
365M

.

When M = 50, this probability is 0.9704 (to 4 dp), so our simulation was accurate. Inter-
estingly, M need only be 23 for P (A) to exceed 1/2. Intuition might suggest that you would
need many more students than this. �

PAGE 5
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2.2 Sample spaces and sets

Terminology: A random experiment is an experiment that produces outcomes which are
not predictable with certainty in advance. The sample space S for a random experiment
is the set of all possible outcomes.

Example 2.4. Consider the following random experiments and their associated sample
spaces. Let ω denote a generic outcome.

(a) Observe the high temperature for today:

S = {ω : −∞ < ω <∞} = R

(b) Record the number of planes landing at CAE:

S = {ω : ω = 0, 1, 2, ..., } = Z+

(c) Toss a coin three times:

S = {(HHH), (HHT), (HTH), (THH), (HTT), (THT), (TTH), (TTT)}

(d) Measure the length of a female subject’s largest uterine fibroid:

S = {ω : ω ≥ 0} = R+ �

Definitions: We say that a set (e.g., A, B, S, etc.) is countable if its elements can be put
into a 1:1 correspondence with the set of natural numbers

N = {1, 2, 3, ..., }.

If a set is not countable, we say it is uncountable. In Example 2.4,

(a) S = R is uncountable

(b) S = Z+ is countable (i.e., countably infinite); |S| = +∞

(c) S = {(HHH), (HHT), ..., (TTT)} is countable (i.e., countably finite); |S| = 8

(d) S = R+ is uncountable

Note: Any finite set is countable. By “finite,” we mean that |A| < ∞, that is, “the
process of counting the elements in A comes to an end.” An infinite set A can be countable
or uncountable. By “infinite,” we mean that |A| = +∞. For example,

• N = {1, 2, 3, ..., } is countably infinite

• A = {ω : 0 < ω < 1} is uncountable.

PAGE 6
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Definitions: Suppose that S is a sample space for a random experiment. An event A is a
subset of S, that is, A ⊆ S. Suppose the experiment produces the outcome ω.

• If ω ∈ A, we say that “A occurs”

• If ω /∈ A, we say that “A does not occur.”

The set A is a subset of B if
ω ∈ A =⇒ ω ∈ B.

This is written A ⊂ B or A ⊆ B. In a random experiment, if the event A occurs, then so
does B. The converse is not necessarily true.

Two sets A and B are equal if each set is a subset of the other, that is,

A = B ⇐⇒ A ⊆ B and B ⊆ A.

In probability, set equality is important. If two events A and B are the same (i.e., A = B),
then they have the same probability.

The null set, denoted by ∅, is the set that contains no outcomes. Intuitively, it makes sense
to assign zero probability to this “event.”

Set Operations: Suppose A and B are subsets of S.

• Union: A ∪ B = {ω ∈ S : ω ∈ A or ω ∈ B}. This is the set of all outcomes in A or in
B (or in both).

• Intersection: A ∩ B = {ω ∈ S : ω ∈ A and ω ∈ B}. This is the set of all outcomes in
A and B.

• Complementation: A = {ω ∈ S : ω /∈ A}. This is the set of all outcomes not in A.

Example 2.5. A medical professional observes adult male patients entering an emergency
room. She classifies each patient according to his blood type (AB+, AB−, A+, A−, B+, B−,
O+, and O−) and whether his systolic blood pressure (SBP) is low (L), normal (N), or high
(H). Consider the observation of the next male patient as a random experiment.

The sample space is

S = {(AB+,L), (AB−,L), (A+,L), (A−,L), (B+,L), (B−,L), (O+,L), (O−,L),

(AB+,N), (AB−,N), (A+,N), (A−,N), (B+,N), (B−,N), (O+,N), (O−,N),

(AB+,H), (AB−,H), (A+,H), (A−,H), (B+,H), (B−,H), (O+,H), (O−,H)}.

Note that this sample space contains |S| = 24 outcomes.

PAGE 7
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This example illustrates many concepts we will discuss in due course:

• There are 8 different blood types. There are 3 different categorizations of SBP. There
are 8 × 3 = 24 possible outcomes in the sample space, which is formed by combining
the two factors. The authors call this “the mn rule.”

• Because S is countable, the authors call this a discrete sample space.

• Are these 24 outcomes equally likely? Probably not. O+ is by far the most common
blood type among American males (about 38 percent). On the other hand, AB− is
rare (only about 1 percent). Similarly, most American males have either normal or
high SBP; much fewer have low SBP.

• Even though we have listed all possible outcomes in S, we have not specified probabil-
ities associated with the outcomes. We cannot assign probability to events like

A = {blood type with a + rhesus status}
B = {high SBP}

without having this information.

Exercise: List the outcomes in A ∪B, A ∩B, and A.

A ∪B = {outcomes with a + rhesus status or high SBP}
= {(AB+,L), (A+,L), (B+,L), (O+,L), (AB+,N), (A+,N), (B+,N), (O+,N),

(AB+,H), (AB−,H), (A+,H), (A−,H), (B+,H), (B−,H), (O+,H), (O−,H)}

A ∩B = {outcomes with a + rhesus status and high SBP}
= {(AB+,H), (A+,H), (B+,H), (O+,H)}

A = {outcomes with a − rhesus status}
= {(AB−,L), (A−,L), (B−,L), (O−,L), (AB−,M), (A−,M), (B−,M), (O−,M),

(AB−,H), (A−,H), (B−,H), (O−,H)}
Exercise: List the outcomes in A ∪B, A ∩B, and A ∩B. �

Here are two last set theory results that will prove to be useful.

Distributive Laws:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

DeMorgan’s Laws:

A ∪B = A ∩B
A ∩B = A ∪B

PAGE 8
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2.3 Axioms of probability

Terminology: We say that two events A and B are mutually exclusive or disjoint if

A ∩B = ∅,

that is, A and B have no outcomes in common. Mutually exclusive events cannot occur
simultaneously. For example, clearly A and A are mutually exclusive. If A occurs, then A
cannot occur and vice versa.

Kolmogorov’s Axioms: Suppose S is a sample space and let B denote the collection of
all possible events. Let P be a set function; i.e.,

P : B → [0, 1],

that satisfies the following axioms:

1. P (A) ≥ 0, for all A ∈ B

2. P (S) = 1

3. If A1, A2, ...,∈ B are pairwise mutually exclusive; i.e., Ai ∩ Aj = ∅ ∀i 6= j, then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

We call P a probability set function (or probability measure).

Remark: Mathematically, we can think of P as a function whose domain is sets (events)
and whose range is [0, 1]. Therefore, probabilities are numbers between 0 and 1 (inclusive).
In a more advanced course, one would describe the collection of events B much more carefully
to avoid certain peculiar mathematical contradictions; we will not.

Consequences: From these 3 axioms, we can develop numerous rules which help us assign
probability to events.

1. Complement rule: P (A) = 1− P (A), for any event A.
Proof. We can write S = A ∪ A. Because A and A are mutually exclusive, Axiom 3 says

P (S) = P (A ∪ A) = P (A) + P (A).

However, P (S) = 1 by Axiom 2. Therefore,

P (A) = 1− P (A). �

Importance: In many problems, it is often much easier to calculate the probability that A
does not occur. If you can do this, then the complement rule gives P (A) easily.

PAGE 9
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2. Null set rule: P (∅) = 0.
Proof. This follows immediately from the complement rule; take A = ∅ and A = S. �

3. Upper bound rule: P (A) ≤ 1.
Proof. In the proof of the complement rule, we wrote

P (S) = P (A ∪ A) = P (A) + P (A).

However, P (A) ≥ 0 by Axiom 1 and P (S) = 1 by Axiom 2. �

4. Monotonicity rule: Suppose A and B are events such that A ⊂ B, that is, A is a
subset of B. Then

P (A) ≤ P (B).

This result makes sense intuitively. If A occurs, then B must occur. However, the reverse is
not true, so P (B) must be larger (or at least not smaller).

Proof. Because A ⊂ B, we can write

B = A ∪ (B ∩ A);

i.e., B ∩ A captures all outcomes in B and not in A. Clearly, A and (B ∩ A) are mutually
exclusive. Thus, from Axiom 3, we have

P (B) = P (A) + P (B ∩ A).

However, from Axiom 1, P (B ∩ A) ≥ 0, so P (B) ≥ P (A). �

5. Additive rule: Suppose A and B are two events.

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Remark: We know if A and B are mutually exclusive, then

P (A ∪B) = P (A) + P (B).

This is what Axiom 3 guarantees. So the additive rule is more general; i.e., A and B need
not be mutually exclusive.

Proof. Write A ∪B = A ∪ (A ∩B). Because A and (A ∩B) are mutually exclusive,

P (A ∪B) = P (A) + P (A ∩B)

by Axiom 3. Now, write B = (A∩B)∪ (A∩B). Clearly, (A∩B) and (A∩B) are mutually
exclusive too. From Axiom 3 again,

P (B) = P (A ∩B) + P (A ∩B).

Combining the expressions for P (A ∩B) in both equations above gives the result. �
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Example 2.6. A smoke detector system uses two interlinked units. If smoke is present, the
probability the first unit will detect it is 0.95 and the probability the second unit will detect
it is 0.90. The probability smoke will be detected by both units is 0.88.

(a) If smoke is present, find the probability that the smoke will be detected by either unit
or both.
(b) Find the probability the smoke will go undetected.

Solutions. Define the events

A = {first unit detects smoke}
B = {second unit detects smoke}.

We are given P (A) = 0.95, P (B) = 0.90, and P (A ∩B) = 0.88.

(a) The probability the system will detect smoke (when present) is

P (A ∪B) = P (A) + P (B)− P (A ∩B)

= 0.95 + 0.90− 0.88 = 0.97.

(b) Smoke will go undetected when A ∩B occurs. By DeMorgan’s Law,

P (A ∩B) = P (A ∪B) = 1− P (A ∪B) = 0.03. �

Remark: The additive rule can be generalized for any sequence of events A1, A2, ..., An; i.e.,

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑∑
i1<i2

P (Ai1 ∩ Ai2)

+
∑∑∑
i1<i2<i3

P (Ai1 ∩ Ai2 ∩ Ai3)− · · ·+ (−1)n+1P

(
n⋂
i=1

Ai

)
.

For example, if n = 3, then

P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3)

− P (A1 ∩ A2)− P (A1 ∩ A3)− P (A2 ∩ A3) + P (A1 ∩ A2 ∩ A3).

Example 2.7. Prove Bonferroni’s Inequality; i.e.,

P (A ∩B) ≥ 1− P (A)− P (B).

Proof. From the additive rule and complement rule, we know

P (A ∩B) = P (A) + P (B)− P (A ∪B)

= [1− P (A)] + [1− P (B)]− P (A ∪B)

= 1− P (A)− P (B) + [1− P (A ∪B)].

However, 1 − P (A ∪ B) = P (A ∪B) is itself a probability and hence 1 − P (A ∪ B) ≥ 0 by
Axiom 1. Thus, we are done. �
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Generalization: Bonferroni’s Inequality can be generalized for any sequence of events
A1, A2, ..., An; i.e.,

P

(
n⋂
i=1

Ai

)
≥ 1−

n∑
i=1

P (Ai).

Application: Bonferroni’s Inequality is useful in statistics when multiple confidence inter-
vals are being written. In this context, the event

Ai = {ith interval includes its target parameter}

and the event

n⋂
i=1

Ai = {each confidence interval includes its target parameter}.

For example, if n = 5 and P (Ai) = 0.95 (confidence level), then the probability all 5 intervals
will include their target parameter is

P

(
5⋂
i=1

Ai

)
≥ 1− 5(0.05) = 0.75.

This probability, which corresponds to the family of 5 intervals taken together, can be much
lower than each interval’s confidence level of 0.95. Furthermore, the fact that this “familywise
confidence level” can be so low is concerning.

2.4 Discrete sample spaces

Terminology: Suppose S is a sample space for a random experiment. If S contains a finite
or countable number of outcomes, we call S a discrete sample space. Recall:

• Finite: |S| <∞; i.e., the number of outcomes in S is finite

• Countable: the number of outcomes may be infinite; i.e., |S| = +∞, but the outcomes
can be put into a 1:1 correspondence with N = {1, 2, 3, ..., }.

Example 2.8. An American style roulette wheel contains 38 numbered compartments or
“pockets.” The pockets are either red, black, or green. The numbers 1 through 36 are evenly
split between red and black, while 0 and 00 are green pockets. Conceptualize the next spin
of the wheel as a random experiment with sample space

S = {1, 2, 3, 4, ..., 34, 35, 36, 0, 00}.

Note that this is a discrete sample space with |S| = 38 outcomes (sample points).
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Consider the following events (i.e., subsets of S):

A1 = {13}
A2 = {“red”} = {1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36}
A3 = {“green”} = {0, 00}.

Terminology: A simple event is an event that consists of exactly one outcome (sample
point).

• In Example 2.8, the event A1 = {13} is a simple event.

A compound event is an event that contains more than one outcome (sample point).
Therefore, any compound event can be written as the (countable) union of simple events. In
Example 2.8, the event A3 = {“green”} = {0, 00} can be written as

A3 = {0} ∪ {00},

the union of 2 simple events. The event A2 = {“red”} can be written as the union of 18
simple events.

Important: In a discrete sample space, calculating the probability of a compound event A
is done by adding up the probabilities associated with each sample point in it. That is,

P (A) =
∑
i:Ei⊂A

P (Ei),

where E1, E2, ..., denote the simple events whose union makes up A. This strategy to
calculate P (A) follows from Axiom 3. If the compound event A can be expressed as
A = E1 ∪ E2 ∪ · · · ∪ Ena (for a finite number of simple events), then

P (A) = P (E1 ∪ E2 ∪ · · · ∪ Ena)
= P (E1) + P (E2) + · · ·+ P (Ena).

Example 2.9. Consider the random experiment of observing the number of children born
during the next live birth in the United States. A sample space for this experiment is

S = {1, 2, 3, 4, 5+}.

Note that this is a discrete sample space with |S| = 5 outcomes (sample points).

Let E1, E2, E3, E4, E5 denote the five simple events that make up S. The CDC reports the
following probabilities during 2015 (among all 3,978,497 live births):

P (E1) = 0.965399

P (E2) = 0.033489

P (E3) = 0.001047

P (E4) = 0.000059

P (E5) = 0.000006

It is easy to see that P (E1) + P (E2) + P (E3) + P (E4) + P (E5) = 1, as it should (Axiom 2).
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Q: Under this model, what is the probability of a multiple birth? Note that the event
A = {multiple birth} can be written as the union of the 4 simple events:

A = E2 ∪ E3 ∪ E4 ∪ E5.

Therefore,

P (A) = P (E2) + P (E3) + P (E4) + P (E5)

= 0.033489 + 0.001047 + 0.000059 + 0.000006 = 0.034601.

Of course, using the complement rule gives you the same answer:

P (A) = 1− P (E1)

= 1− 0.965399 = 0.034601. �

Example 2.10. Two jurors are needed to serve as “alternates” in an attempted murder
trial. These two jurors will be selected from 5 potential jurors, three men and two women.
Envision the selection of these two jurors as a random experiment with sample space

S = {(M1,M2), (M1,M3), (M1,W1), (M1,W2), (M2,M3), (M2,W1), (M2,W2), (M3,W1),

(M3,W2), (W1,W2)}.

Note that this is a discrete sample space with |S| = 10 outcomes (sample points).

Q: What is the probability at least one woman is selected as an alternate juror? We do not
have enough information to answer this question because we don’t know the probabilities
associated with the 10 sample points. However, certainly we can list out the sample points
in this event:

A = {at least one woman selected}
= {(M1,W1), (M1,W2), (M2,W1), (M2,W2), (M3,W1), (M3,W2), (W1,W2)}.

Note: If we assume the outcomes in S are equally likely; i.e., each with probability

1

|S|
=

1

10
,

then we can compute P (A). It is simply

P (A) =
number of outcomes in A

number of outcomes in S
=

7

10
.

However, it is important to understand that this simple rule for assigning probabilities is
only valid when the outcomes in S are equally likely. If the outcomes in S are not equally
likely, then this probability assignment is not correct.
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Equiprobability model: Suppose the discrete sample space S contains N = |S| < ∞
outcomes (sample points), each of which is equally likely. If the event A contains na outcomes
(sample points), then

P (A) =
na
N
.

Proof. Write S = E1∪E2∪· · ·∪EN , where Ei denotes the ith simple event, for i = 1, 2, ..., N .
Then,

1 = P (S) = P (E1 ∪ E2 ∪ · · · ∪ EN) =
N∑
i=1

P (Ei),

by Axioms 2 and 3. Because P (E1) = P (E2) = · · · = P (EN),

1 =
N∑
i=1

P (Ei) =⇒ P (Ei) =
1

N
, i = 1, 2, ..., N.

Without loss of generality, take A = E1 ∪ E2 ∪ · · · ∪ Ena . Then,

P (A) = P (E1 ∪ E2 ∪ · · · ∪ Ena) =
na∑
i=1

P (Ei) =
na∑
i=1

1

N
=
na
N
. �

Implication: Suppose S is a discrete sample space with a finite number of outcomes; i.e.,
N < ∞. If each outcome is equally likely, then finding P (A) reduces to two “counting
problems:” one to find N and one to find na.

• In simple experiments, like Example 2.10, we can simply list out all outcomes in S and
A and count to find N and na quickly.

• In more complicated experiments, it may not be possible to do this so quickly. We
need combinatoric rules (counting rules) to accomplish this.

• Combinatoric rules are used in probability to count the number of outcomes.

2.5 Tools for counting outcomes (sample points)

2.5.1 Basic counting rule

Basic counting rule (“mn rule”): Suppose we would like to count the number of paired
outcomes formed by two factors. The first factor has m outcomes. The second factor has n
outcomes. The total number of paired outcomes is mn.

Example 2.11. An experiment consists of rolling a die (with faces 1, 2, ..., 6) and tossing
a coin (with sides H and T). The die has m = 6 outcomes. The coin has n = 2 outcomes.
There are mn = 12 paired outcomes. The sample space for this experiment is

S = {(1,H), (2,H), (3,H), (4,H), (5,H), (6,H), (1,T), (2,T), (3,T), (4,T), (5,T), (6,T)}.

There are N = 12 outcomes (sample points) in S. �
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Generalization: The basic counting rule can be generalized easily. Suppose there are k
factors with

n1 = number of outcomes for factor 1

n2 = number of outcomes for factor 2
...

nk = number of outcomes for factor k.

The total number of outcomes is

k∏
i=1

ni = n1 × n2 × · · · × nk.

Example 2.12. An experiment consists of selecting a standard South Carolina license plate
which consists of 3 letters and 3 numbers. We can think of one outcome (sample point) in
the underlying sample space S as having the following structure:

( ).

Q: How many standard plates are possible; i.e., how many outcomes are in S?
A: There are

N = 26× 26× 26× 10× 10× 10 = 17576000

possible outcomes.

Q: Assume each outcome in S is equally likely (e.g., license plate letters/numbers are de-
termined at random). What is the probability a randomly selected plate contains no repeat
letters and no repeat numbers?
A: Define the event

A = {no repeat letters/numbers}.
The number of outcomes in A is

na = 26× 25× 24× 10× 9× 8 = 11232000.

Therefore,

P (A) =
na
N

=
11232000

17576000
≈ 0.6391. �

Example 2.13. The birthday problem, revisited. An experiment consists of observing the
birthday of M = 50 students. Assume 365 days. There are

N = 365× 365× 365× · · · × 365 = 36550

possible outcomes. We can think of one outcome (sample point) in the underlying sample
space S as having the following structure:

( ).
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Q: Assume each outcome in S is equally likely; e.g., no twins/triplets, etc. What is the
probability there will be at least one shared birthday?
A: Define the event

A = {no shared birthdays}.

The number of outcomes in A is

365× 364× 363 · · · × 317× 316 = 50!

(
365

50

)
.

Therefore,

P (A) =
50!
(

365
50

)
36550

≈ 0.0296.

Using the complement rule, the probability of at least one shared birthday is

P (A) = 1− P (A) = 1−
50!
(

365
50

)
36550

≈ 0.9704.

Compare this with Example 2.3 where we used simulation to “estimate” this answer. �

2.5.2 Permutations

Remark: We have seen examples where constructing sample spaces requires us to work with
distinct “objects;” e.g., license plate digits, students, etc. Counting the number of outcomes
(in S or in A) often requires us to count the number of ways distinct objects can be arranged
in a sequence.

Terminology: A permutation is an arrangement of distinct objects in a particular order.
Order is important.

Result: Suppose I have n distinct objects. There are

n! = n(n− 1)(n− 2)× · · · × 2× 1

ways to permute these objects (i.e., to arrange them in a particular order).

Example 2.14. Consider the experiment of arranging 10 distinct books on my bookshelf.
There are

N = 10! = 3628800

possible permutations. We can think of one sample point in the underlying sample space S
as having the following structure:

( ).

Q: Assume each outcome in S is equally likely. If there are 5 math books, 3 physics books,
and 2 chemistry books, what is the probability that a randomly selected arrangement will
keep like-subject books together?
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A: Define the event
A = {like-subject books kept together}.

The number of outcomes in A can be found using the basic counting rule with

n1 = number of ways to permute M, P, and C ordering = 3!

n2 = number of ways to permute M books = 5!

n3 = number of ways to permute P books = 3!

n4 = number of ways to permute C books = 2!

The number of outcomes in A is

na = 3!× 5!× 3!× 2! = 8640.

Therefore,

P (A) =
na
N

=
8640

3628800
≈ 0.0024. �

Remark: In Example 2.14, our goal was to permute n distinct objects (i.e., books). In
other problems, we first select r objects (from the available n) and then permute those only.

Result: From a collection of n distinct objects, we select and permute r of them (r ≤ n).
The number of ways to do this is

P n
r =

n!

(n− r)!
.

The symbol P n
r is read “the permutation of n things taken r at a time.”

Proof. Envision r slots. There are n ways to fill the first slot, n − 1 ways to fill the second
slot, and so on, until we get to the rth slot, where there are n− r + 1 ways to fill it. From
the basic counting rule, there are

n(n− 1)(n− 2)× · · · × (n− r + 1) =
n!

(n− r)!

different permutations. �

Example 2.15. A personnel director for a corporation has hired 12 new engineers. She must
pick 3 engineers to fill distinct positions (team leader, consultant, support staff member).
Note that because these positions are inherently different, the selection ordering matters;

• e.g., the outcome (Jim, Mary, Celeste) and the outcome (Celeste, Jim, Mary) are
different outcomes.

Conceptualize the selection of 3 engineers from 12 as a random experiment. We can think
of one outcome (sample point) in the underlying sample space S as having the following
structure:

( ).
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Because the ordering within outcomes is important, there are

N = P 12
3 =

12!

(12− 3)!
= 12× 11× 10 = 1320

outcomes in S.

Q: Assume each outcome in S is equally likely. Suppose there are 6 engineers from USC and
6 from Clemson. What is the probability a USC graduate is selected as the team leader and
the remaining 2 positions are filled by Clemson graduates?
A: Define the event

A = {USC team leader and Clemson graduates for other 2 positions}.

The number of outcomes in A can be found using the basic counting rule with

n1 = number of ways to select 1 USC graduate = 6

n2 = number of ways to select 2 Clemson graduates = P 6
2

The number of outcomes in A is

na = 6× P 6
2 = 6× 30 = 180.

Therefore,

P (A) =
na
N

=
180

1320
≈ 0.1363. �

2.5.3 Multinomial coefficients

Example 2.16. How many permutations of the letters in the word PEPPER are there?

Solution. Initially treat each of the 6 letters as distinct objects and emphasize this by writing

P1E1P2P3E2R.

We know there are
6! = 720

possible permutations of these 6 distinct objects. Now, because the letters in PEPPER really
are not distinct, the number of possible permutations is smaller 720. By how much? Note
that there are

3! ways to permute the Ps
2! ways to permute the Es
1! ways to permute the Rs.

Therefore, 6! is 3!× 2!× 1! times too large. The number of permutations is

6!

3! 2! 1!
= 60. �
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Terminology: Multinomial coefficients arise in the algebraic expansion of the multino-
mial expression (x1 + x2 + · · ·+ xk)

n; i.e.,

(x1 + x2 + · · ·+ xk)
n =

∑
D

(
n

n1n2 · · ·nk

)
xn1

1 x
n2
2 · · ·x

nk
k ,

where D = {(n1, n2, ..., nk) :
∑k

i=1 ni = n}. The multinomial coefficient(
n

n1n2 · · ·nk

)
=

n!

n1! n2! · · · nk!
.

Importance: In counting problems, multinomial coefficients are used to count

• the number of ways to permute n objects, of which n1 are “alike,” n2 are “alike,” and
so on (see Example 2.16).

• the number of ways to partition n distinct objects into k distinct groups containing
n1, n2, ..., nk objects, respectively (where

∑k
i=1 ni = n).

Example 2.17. A police department in a small city consists of 10 officers. The department
policy is to have 5 officers patrolling the streets, 2 officers working at the station, and 3
officers on reserve. How many divisions (partitions) of the 10 officers are possible?

A:

(
10

5 2 3

)
=

10!

5! 2! 3!
= 2520. �

Example 2.18. A signal is formed by arranging 9 flags in a line. There are 4 white flags,
3 blue flags, and 2 yellow flags. Envision the process of forming a signal as a random
experiment.

We can think of one outcome (sample point) in the underlying sample space S as having the
following structure:

( ).

Q: What is the probability the signal has the 4 white flags grouped together?

Note: We offer two solutions. The solutions differ in the way we conceptualize what a
sample point looks like:

1. one solution treats flags of the same color as “indistinguishable” objects

2. one solution treats all 9 flags as distinct objects.

In the first conceptualization, a sample point might look like

( B W W Y B Y B W W )
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In the second, a sample point might look like

( B3 W2 W1 Y1 B1 Y2 B2 W4 W3 )

Important: Different counting rules are needed for each solution. In both solutions, we
define

A = {white flags grouped together}.

and assume that outcomes (sample points) are equally likely.

Solution 1: Treat flags of the same color as “indistinguishable” objects. The number of
sample points in S is

N =

(
9

4 3 2

)
=

9!

4! 3! 2!
= 1260.

This is the number of ways to permute 9 objects, of which 4 are “alike,” 3 are “alike,” and 2
are “alike.” Now, we need to count the number of sample points in A. We can do this using
the basic counting rule:

n1 = number of ways to select 4 adjacent positions for W flags = 6

n2 = number of ways to permute B/Y flags among the remaining positions =

(
5

3 2

)
Therefore,

na = n1 × n2 = 6×
(

5

3 2

)
= 60

and

P (A) =
na
N

=
60

1260
≈ 0.0476.

Solution 2: Treat all 9 flags as distinct objects. The number of sample points in S is

N = 9! = 362880.

This is the number of ways to permute 9 distinct objects. Now, we need to count the number
of sample points in A. We can do this using the basic counting rule:

n1 = number of ways to select 4 adjacent positions for W flags = 6

n2 = number of ways to permute W flags = 4!

n3 = number of ways to permute B/Y flags among the remaining positions = 5!

Therefore,
na = n1 × n2 × n3 = 6× 4!× 5! = 17280

and

P (A) =
na
N

=
17280

362880
≈ 0.0476. �
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2.5.4 Combinations

Result: From a collection of n distinct objects, we choose r of them (r ≤ n) without regard
to the order in which the objects are chosen. The number of ways to do this is

Cn
r =

(
n

r

)
=

n!

r! (n− r)!
.

The symbol Cn
r is read “the combination of n things taken r at a time.”

Remark: To see why this makes sense, envision n distinct objects. The number of ways to
partition these objects into 2 distinct groups, of which r are “alike” (i.e., the chosen objects)
and n− r are “alike” (i.e., the objects not chosen) is given by the multinomial coefficient(

n

r n− r

)
=

n!

r! (n− r)!
.

Remark: We adopt the notation
(
n
r

)
, read “n choose r,” henceforth as the symbol for

Cn
r . The terms

(
n
r

)
are called binomial coefficients because they arise in the algebraic

expansion of a binomial; i.e.,

(a+ b)n =
n∑
r=0

(
n

r

)
an−rbr.

Example 2.19. In Example 2.15, a personnel director was tasked with choosing 3 engineers
from 12 to fill distinct positions. If the positions are not distinct, then there are

N =

(
12

3

)
=

12!

3! (12− 3)!
= 220

possible ways to select 3 engineers.

Q: Assume each combination is equally likely. Suppose there are 6 engineers from USC and
6 from Clemson. What is the probability of selecting 1 USC engineer and 2 from Clemson?

A: Define the event

A = {1 USC graduate and 2 Clemson graduates chosen}.

The number of outcomes in A can be found using the basic counting rule with

n1 = number of ways to select 1 USC graduate =

(
6

1

)
= 6

n2 = number of ways to select 2 Clemson graduates =

(
6

2

)
= 15

The number of outcomes in A is

na = n1 × n2 = 6× 15 = 90.

Therefore,

P (A) =
na
N

=
90

220
≈ 0.4091. �
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Remark: From Examples 2.15 and 2.19, one should note that, in general,

P n
r = r!×

(
n

r

)
.

This formula highlights the difference between P n
r and

(
n
r

)
. To count the number of ways

to permute n objects chosen r at a time, we first must choose the r objects. The binomial
coefficient

(
n
r

)
counts the number of ways to do this. Then, once we have our r chosen

objects, there are r! ways to permute them.

Example 2.20. Consider the experiment of drawing 5 cards from a standard deck of 52
cards (without replacement). We can conceptualize the sample space as

S = {[2S, 2D, 2H, 2C, 3S], [2S, 2D, 2H, 2C, 3D], [2S, 2D, 2H, 2C, 3H], ..., [AS,AD,AH,AC,KC]}.

The number of outcomes in S is

N =

(
52

5

)
=

52!

5! (52− 5)!
= 2598960.

Q: Assuming that each outcome in S is equally likely, what is the probability of getting “3
of a kind?”

A: Define the event
A = {“3 of a kind”}.

The number of outcomes in A can be found using the basic counting rule with

n1 = number of ways to choose denomination =

(
13

1

)
= 13

n2 = number of ways to choose 3 suits =

(
4

3

)
= 4

n3 = number of ways to choose 2 other denominations =

(
12

2

)
= 66

n4 = number of ways to choose 1 card for each “other” denomination =

(
4

1

)2

= 16

The number of outcomes in A is

na = n1 × n2 × n3 × n4 = 13× 4× 66× 16 = 54912.

Therefore,

P (A) =
na
N

=
54912

2598960
≈ 0.0211. �

Note: In choosing the 2 other denominations above (Step 3), it is important to remember
that these 2 denominations must be different. If they are the same, then the hand is a “full
house” instead (not a lesser “3 of a kind” hand).
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Example 2.21. The matching problem, revisited. Suppose M men are at a party, and each
man is wearing a hat. Each man throws his hat into the center of the room. Each man then
selects a hat at random. What is the probability at least one man selects his own hat; i.e.,
there is at least one “match”? Define

A = {at least one man selects his own hat}

and the events

Ai = {the ith man selects his own hat}, i = 1, 2, ...,M,

so that

A =
M⋃
i=1

Ai =⇒ P (A) = P

(
M⋃
i=1

Ai

)
.

We now use the additive rule for M events (see pp 11, notes). Note the following:

P (Ai) =
(M − 1)!

M !
=

1

M
∀i = 1, 2, ...,M

P (Ai1 ∩ Ai2) =
(M − 2)!

M !
1 ≤ i1 < i2 ≤M

P (Ai1 ∩ Ai2 ∩ Ai3) =
(M − 3)!

M !
1 ≤ i1 < i2 < i3 ≤M

This pattern continues; the probability of the M -fold intersection is

P

(
M⋂
i=1

Ai

)
=

(M −M)!

M !
=

1

M !
.

Therefore, by the additive rule, we have

P

(
M⋃
i=1

Ai

)
=

M∑
i=1

P (Ai)−
∑∑
i1<i2

P (Ai1 ∩ Ai2)

+
∑∑∑
i1<i2<i3

P (Ai1 ∩ Ai2 ∩ Ai3)− · · ·+ (−1)M+1P

(
M⋂
i=1

Ai

)

= M

(
1

M

)
−
(
M

2

)
(M − 2)!

M !
+

(
M

3

)
(M − 3)!

M !
− · · ·+ (−1)M+1 1

M !

=
M∑
k=1

(−1)k+1

(
M

k

)
(M − k)!

M !

=
M∑
k=1

(−1)k+1 M !

k!(M − k)!

(M − k)!

M !
= 1−

M∑
k=0

(−1)k

k!
.

Compare this with Example 2.2 where we used simulation to “estimate” this answer for
different values of M . �
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2.6 Conditional probability and independence

Remark: The probability an event A will often depend on other “related” events. If we
know another one of these related events has occurred (or has not occurred), this may change
the way we assess the likelihood of A occurring.

Example 2.22. Consider the sample space in Example 2.10,

S = {(M1,M2), (M1,M3), (M1,W1), (M1,W2), (M2,M3), (M2,W1), (M2,W2), (M3,W1),

(M3,W2), (W1,W2)},

where the experiment consisted of choosing two alternate jurors from three men and two
women. Define the event

A = {two women are chosen}.

Assuming each outcome (sample point) in S is equally likely, clearly

P (A) =
na
N

=
1

10
.

Now suppose we know that at least one of the jurors chosen is a woman. That is, the event

B = {at least one woman chosen}
= {(M1,W1), (M1,W2), (M2,W1), (M2,W2), (M3,W1), (M3,W2), (W1,W2)}

has occurred. How does the knowledge of B occurring influence how we assign probability
to A?

In essence, a “new” sample space emerges when we know that B has occurred, namely, the
new sample space is B. Continuing to assume outcomes are equally likely, the probability A
occurs has now changed to

P (A|B) =
1

7
.

We write P (A|B) to emphasize this is a conditional probability. �

Terminology: Let A and B be events in a sample space S. The conditional probability
of A, given that B has occurred, is given by

P (A|B) =
P (A ∩B)

P (B)
,

provided that P (B) > 0.

Example 2.23. Brazilian scientists have identified a new strain of the H1N1 virus. The ge-
netic sequence of the new strain consists of alterations in the hemagglutinin protein, making
it significantly different than the usual H1N1 strain. Public health officials wish to study the
population of residents in Rio de Janeiro.
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Suppose that in this population,

• the probability of catching the usual strain is 0.10

• the probability of catching the new strain is 0.05

• the probability of catching both strains is 0.01.

(a) Find the probability of catching the usual strain, given that the new strain is caught.
(b) Find the probability of catching the new strain, given that at least one strain is caught.

Solutions. Define the events

A = {resident catches usual strain}
B = {resident catches new strain}.

From the information above, we have P (A) = 0.10, P (B) = 0.05, and P (A ∩B) = 0.01.

(a) Using the definition of conditional probability,

P (A|B) =
P (A ∩B)

P (B)
=

0.01

0.05
= 0.20.

(b) If “at least one strain is caught,” this means A ∪B has occurred. Therefore,

P (B|A ∪B) =
P (B ∩ (A ∪B))

P (A ∪B)
=

P (B)

P (A) + P (B)− P (A ∩B)

=
0.05

0.10 + 0.05− 0.01
≈ 0.3571.

Note above that B ⊂ (A ∪B) so B ∩ (A ∪B) = B.

Exercise: Find the probability of not catching the usual strain, given that the new strain
is not caught. �

Important: Suppose P is a valid probability set function over (S,B); i.e., it satisfies the
Kolmogorov axioms. Provided that P (B) > 0, the conditional probability assignment

P (A|B) =
P (A ∩B)

P (B)

also satisfies the Kolmogorov axioms; i.e.,

1. P (A|B) ≥ 0, for all A ∈ B

2. P (B|B) = 1

3. If A1, A2, ...,∈ B are pairwise mutually exclusive; i.e., Ai ∩ Aj = ∅ ∀i 6= j, then

P

(
∞⋃
i=1

Ai

∣∣∣∣∣B
)

=
∞∑
i=1

P (Ai|B).

PAGE 26



STAT 511: CHAPTER 2 JOSHUA M. TEBBS

Implication: Because the way we assign conditional probability also satisfies the Kol-
mogorov axioms, all the probability rules we derived earlier have their respective “conditional
versions.” For example,

1. Complement rule: P (A|B) = 1− P (A|B)

2. Monotonicity: If A1 ⊂ A2, then P (A1|B) ≤ P (A2|B)

3. Additive rule: P (A1 ∪ A2|B) = P (A1|B) + P (A2|B)− P (A1 ∩ A2|B).

Terminology: Suppose A and B are events in S. We say A and B are independent if

P (A ∩B) = P (A)P (B).

If both P (A) > 0 and P (B) > 0, then the following three conditions for independence are
equivalent:

P (A ∩B) = P (A)P (B).

P (A|B) = P (A)

P (B|A) = P (B).

Remark: Do not confuse “independence” with what it means for A and B to be mutually
exclusive. Independence means that the occurrence of A does not affect whether B occurs
(and vice versa). If A and B are mutually exclusive, this means that A and B can not occur
simultaneously.

Exercise: Suppose P (A) > 0 and P (B) > 0. Prove that if A and B are mutually exclusive,
then A and B cannot be independent. Now go the other way. Prove that if A and B are
independent, then A and B cannot be mutually exclusive.

Example 2.24. An electrical system consists of two components. The probability the second
component functions in a satisfactory manner during its design life is 0.90. The probability
at least one of the two components does so is 0.96. The probability both components do so
is 0.75. Do the two components function independently?

Solution. Define the events

A = {component 1 functions}
B = {component 2 functions}.

From the information above, we have P (B) = 0.90, P (A∪B) = 0.96, and P (A∩B) = 0.75.
The additive rule gives

0.96 = P (A) + 0.90− 0.75 =⇒ P (A) = 0.81.

However,
0.75 = P (A ∩B) 6= P (A)P (B) = 0.81(0.90) = 0.729.

Therefore, the events A and B are not independent.

Exercise: Check that P (A|B) 6= P (A) and P (B|A) 6= P (B). �
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Result: Suppose A and B are events in S. If A and B are independent, then so are

(a) A and B

(b) A and B

(c) A and B.

Proof. We prove part (a) only; the other parts follow similarly. Suppose A and B are
independent. Then

P (A ∩B) = P (A|B)P (B) = [1− P (A|B)]P (B) = [1− P (A)]P (B) = P (A)P (B).

We used the fact that A and B were independent above when we wrote P (A|B) = P (A). �

Multiplication rule: Suppose A and B are events in S. Then

P (A ∩B) = P (A|B)P (B)

= P (B|A)P (A).

This “rule” follows directly from the definition of conditional probability.

Generalization: Suppose A1, A2, ..., An are events in S. Then

P

(
n⋂
i=1

Ai

)
= P (A1)× P (A2|A1)× P (A3|A1 ∩ A2)× · · · × P

(
An

∣∣∣∣∣
n−1⋂
i=1

Ai

)
.

Proof. We use mathematical induction. This is clearly true when n = 2 (see above). Assume
the result holds for n events. It suffices to show the induction step

P

(
n+1⋂
i=1

Ai

)
= P (A1)×P (A2|A1)×P (A3|A1∩A2)×· · ·×P

(
An

∣∣∣∣∣
n−1⋂
i=1

Ai

)
×P

(
An+1

∣∣∣∣∣
n⋂
i=1

Ai

)
.

Write

P

(
n+1⋂
i=1

Ai

)
= P

(
n⋂
i=1

Ai ∩ An+1

)
= P

(
An+1

∣∣∣∣∣
n⋂
i=1

Ai

)
P

(
n⋂
i=1

Ai

)
.

However, note that

P

(
n⋂
i=1

Ai

)
= P (A1)× P (A2|A1)× P (A3|A1 ∩ A2)× · · · × P

(
An

∣∣∣∣∣
n−1⋂
i=1

Ai

)

is true by assumption. The result follows immediately. �

Discussion: The multiplication rule allows us to approach calculating the probability of
an intersection “sequentially.” First, calculate P (A1) for the first event. Next, calculate
P (A2|A1) for the second event (given the first). Next, calculate P (A3|A1 ∩A2) for the third
event (given the first two), and so on. The next example illustrates this approach.
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Example 2.25. I am dealt a hand of 5 cards at random. What is the probability they are
all spades?

Solution. Define the events

Ai = {the ith card is a spade}, i = 1, 2, 3, 4, 5.

Assuming each card is randomly drawn from the deck,

P (A1) =
13

52

P (A2|A1) =
12

51

P (A3|A1 ∩ A2) =
11

50

P (A4|A1 ∩ A2 ∩ A3) =
10

49

P (A5|A1 ∩ A2 ∩ A3 ∩ A4) =
9

48
.

Therefore, the probability all five cards are spades is

P

(
5⋂
i=1

Ai

)
= P (A1)× P (A2|A1)× P (A3|A1 ∩ A2)× P (A4|A1 ∩ A2 ∩ A3)

× P (A5|A1 ∩ A2 ∩ A3 ∩ A4)

=
13

52
× 12

51
× 11

50
× 10

49
× 9

48
≈ 0.0005.

Remark: When I taught this class the last time, a student noted this calculation is easier if
you simply regard the cards as belonging to two groups: spades and non-spades. There are(

13
5

)
ways to draw 5 spades from 13. There are

(
52
5

)
possible hands. Thus, the probability of

drawing 5 spades (assuming each hand is equally likely) is
(

13
5

)
/
(

52
5

)
≈ 0.0005. �

Terminology: Suppose A1, A2, ..., An are events in S. We say A1, A2, ..., An are mutually
independent if for any sub-collection Ai1 , Ai2 , ..., Aik , we have

P

(
k⋂
j=1

Aij

)
=

k∏
j=1

P (Aij).

Special case: Take 3 events A1, A2, and A3. For these events to be mutually independent,
we need them to be pairwise independent:

P (A1 ∩ A2) = P (A1)P (A2)

P (A1 ∩ A3) = P (A1)P (A3)

P (A2 ∩ A3) = P (A2)P (A3)

and we also need

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3).

For n > 2, mutual independence is a stronger condition than pairwise independence.
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Exercise: Come up with an example of 3 events A1, A2, and A3 that are pairwise indepen-
dent but not mutually independent. Hint: Think of rolling two fair dice with a sample space
that regards all N = 36 outcomes as being equally likely.

Remark: Many random experiments can be envisioned as consisting of a sequence of n
“trials” that are viewed as independent (e.g., flipping a coin 10 times). If Ai denotes the
event associated with the ith trial, and the trials are mutually independent, then

P

(
n⋂
i=1

Ai

)
=

n∏
i=1

P (Ai).

Example 2.26. The State Hygienic Laboratory at the University of Iowa tests thousands
of residents for chlamydia every year. Suppose on a given day the lab tests n = 30 individual
residents. Conceptualizing this as random experiment, the sample space can be written as

S = {(0, 0, 0, ..., 0), (1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (1, 1, 1, ..., 1)},

where “0” denotes a negative individual and “1” denotes a positive individual. Note that
there are N = 230 = 1,073,741,824 outcomes in S. However, these outcomes are probably
not equally likely. Define the events

Ai = {ith individual is positive}, i = 1, 2, ..., 30.

Assume the 30 events A1, A2, ..., A30 are mutually independent and that P (Ai) = p. What
is the probability that at least one individual is positive?

Solution. First, note that by using the complement rule, we have P (Ai) = 1−P (Ai) = 1−p,
for i = 1, 2, ..., 30. Now, the event

A = {at least one individual is positive} =
30⋃
i=1

Ai.

The complement of A is

A = {all individuals are negative} =
30⋂
i=1

Ai

by DeMorgan’s Law. Because A1, A2, ..., A30 are mutually independent (by assumption), the
complements A1, A2, ..., A30 are also mutually independent. Therefore,

P (A) = P

(
30⋂
i=1

Ai

)
=

30∏
i=1

P (Ai) = (1− p)30.

Finally,
P (A) = 1− P (A) = 1− (1− p)30.

For example, if p = 0.01, then the probability of at least one positive individual among the
30 tested is P (A) = 0.2603. �
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2.7 Law of Total Probability and Bayes’ Rule

Law of Total Probability: Suppose A and B are events in S. We can express A as the
union of two mutually exclusive events

A = (A ∩B) ∪ (A ∩B).

Therefore, by Axiom 3,

P (A) = P (A ∩B) + P (A ∩B)

= P (A|B)P (B) + P (A|B)P (B).

This is called the Law of Total Probability.

Remark: The Law of Total Probability (LOTP) gives us a way to calculate P (A) by
relying instead on the conditional probabilities P (A|B) and P (A|B) and the (unconditional)
probability of a related event B. More specifically, P (A) is a linear combination of the
conditional probabilities P (A|B) and P (A|B). The “weights” in the linear combination,
P (B) and P (B), add to 1.

Example 2.27. An insurance company classifies drivers as “accident-prone” and “non-
accident-prone.” The probability an accident-prone driver has an accident is 0.4. The prob-
ability a non-accident-prone driver has an accident is 0.2. The population is estimated to be
30 percent accident-prone.

(a) What is the probability that a policy-holder will have an accident?
(b) If a policy-holder has an accident, what is the probability that s/he was “accident-prone?”

Solutions. Define the events

A = {policy holder has an accident}
B = {policy holder is accident-prone}.

We are given P (A|B) = 0.4, P (A|B) = 0.2, and P (B) = 0.3.

(a) We want to calculate P (A). By the LOTP,

P (A) = P (A|B)P (B) + P (A|B)P (B)

= 0.4(0.3) + 0.2(0.7) = 0.26.

(b) We want to calculate P (B|A). Note that

P (B|A) =
P (A ∩B)

P (A)
=

P (A|B)P (B)

P (A)

=
0.4(0.3)

0.26
≈ 0.462. �
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Note: From Example 2.27(b), we see that, in general,

P (B|A) =
P (A|B)P (B)

P (A)
=

P (A|B)P (B)

P (A|B)P (B) + P (A|B)P (B)
.

This is a special case of Bayes’ Rule.

Example 2.28. Diagnostic testing. A lab test is 95% effective at detecting a disease when
it is present. It is 99% effective at declaring a subject negative when the subject is truly
negative for the disease. Suppose 8% of the population has the disease.

(a) What is the probability a randomly selected subject will test positively?
(b) What is the probability a subject has the disease if his test is positive?

Solutions. Define the events

D = {disease is present}
A = {test is positive}.

We are given

P (A|D) = 0.95 (“sensitivity”)

P (A|D) = 0.99 (“specificity”)

P (D) = 0.08 (“prevalence”).

(a) We want P (A). By the LOTP,

P (A) = P (A|D)P (D) + P (A|D)P (D)

= 0.95(0.08) + 0.01(0.92) ≈ 0.0852.

(b) We want P (D|A). By Bayes’ Rule,

P (D|A) =
P (A|D)P (D)

P (A|D)P (D) + P (A|D)P (D)

=
0.95(0.08)

0.95(0.08) + 0.01(0.92)
≈ 0.892.

Remark: Bayes’ Rule allows us to “update” probabilities on the basis of observed informa-
tion (in Example 2.28, this “observed information” is the test result):

Prior probability Test result Posterior probability
P (D) = 0.08 −→ A −→ P (D|A) ≈ 0.892
P (D) = 0.08 −→ A −→ P (D|A) ≈ 0.004

Note: P (D|A) in this example is called the “positive predictive value” (PPV). Calculate
P (D|A), the “negative predictive value” (NPV). �
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Remark: For two events A and B, the formulas for LOTP and Bayes’ Rule are given below:

P (A) = P (A|B)P (B) + P (A|B)P (B)

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|B)P (B)
.

Both of these formulas arise because the sample space S can be written as S = B ∪ B, the
union of two mutually exclusive events. In other words, the events B and B “partition” the
sample space. We now generalize LOTP and Bayes’ Rule for an arbitrary partition of S.

Terminology: A collection of events B1, B2, ..., Bk forms a partition of the sample space
S if

k⋃
i=1

Bi = B1 ∪B2 ∪ · · · ∪Bk = S

and Bi ∩Bj = ∅, for i 6= j.

LOTP: Suppose A is an event in S and suppose B1, B2, ..., Bk forms a partition of S. Then

P (A) =
k∑
i=1

P (A|Bi)P (Bi).

Proof. The event A can be written as

A = A ∩ S = A ∩
k⋃
i=1

Bi =
k⋃
i=1

(A ∩Bi).

Because B1, B2, ..., Bk partition S, the events A∩B1, A∩B2, ..., A∩Bk are pairwise mutually
exclusive. Therefore,

P (A) = P

(
k⋃
i=1

(A ∩Bi)

)
=

k∑
i=1

P (A ∩Bi) =
k∑
i=1

P (A|Bi)P (Bi),

the last step following from the multiplication rule. �

Bayes’ Rule: Suppose A is an event in S and suppose B1, B2, ..., Bk forms a partition of
S. Then

P (Bj|A) =
P (A|Bj)P (Bj)∑k
i=1 P (A|Bi)P (Bi)

.

Proof. From the definition of conditional probability and the multiplication rule, note that

P (Bj|A) =
P (A ∩Bj)

P (A)
=
P (A|Bj)P (Bj)

P (A)
.

Now just write P (A) out in its LOTP expansion. �
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Example 2.29. For policy holders of a certain age, a life insurance company issues standard,
preferred, and ultra-preferred policies. Among these policy holders,

• 60 percent are standard with a probability of 0.05 of dying next year.

• 30 percent are preferred with a probability of 0.03 of dying next year.

• 10 percent are ultra-preferred with a probability of 0.01 of dying next year.

(a) What is the probability a policy holder of this certain age dies next year?
(b) A policy holder of this certain age dies next year. What is the probability the deceased
was a preferred policy holder?
(c) A policy holder of this certain age does not die next year. What is the probability this
policy holder is an ultra-preferred policy holder?

Solutions. Define the events A = {policy holder dies next year} and

B1 = {policy holder has standard policy}
B2 = {policy holder has preferred policy}
B3 = {policy holder has ultra-preferred policy}.

Note that {B1, B2, B3} partition the sample space with P (B1) = 0.60, P (B2) = 0.30, and
P (B3) = 0.10. We are also given P (A|B1) = 0.05, P (A|B2) = 0.03, and P (A|B3) = 0.01.

(a) We want P (A). By the LOTP,

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

= 0.05(0.60) + 0.03(0.30) + 0.01(0.10) = 0.04.

(b) We want P (B2|A). By Bayes’ Rule,

P (B2|A) =
P (A|B2)P (B2)

P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

=
0.03(0.30)

0.05(0.60) + 0.03(0.30) + 0.01(0.10)
= 0.225.

Note how the “prior probability” P (B2) = 0.30 has changed to P (B2|A) = 0.225 when we
learn that A has occurred.

(c) We want P (B3|A). By Bayes’ Rule,

P (B3|A) =
P (A|B3)P (B3)

P (A)
=

[1− P (A|B3)]P (B3)

1− P (A)
=

(1− 0.01)(0.10)

1− 0.04
≈ 0.103.

Note how the “prior probability” P (B3) = 0.10 has changed to P (B3|A) ≈ 0.103 when we
learn that A has occurred.
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3 Discrete Random Variables and their Probability Dis-

tributions

3.1 Introduction

Recall: In Example 2.26 (pp 30, notes), we considered the problem of testing 30 Iowa
residents for chlamydia. Conceptualizing this as random experiment, we wrote the sample
space as

S = {(0, 0, 0, ..., 0), (1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (1, 1, 1, ..., 1)},

where “0” denotes a negative individual and “1” denotes a positive individual. Note that
there are N = 230 = 1,073,741,824 outcomes in S.

Remark: Keeping track of outcomes in large unwieldy sample spaces like this is not practi-
cal. In this and other random experiments, it is much easier to reduce each outcome (sample
point) to a numerical value.

Terminology: A random variable Y is a function whose domain is the sample space S
and whose range is the set of real numbers R = (−∞,∞). That is,

Y : S → R

takes outcomes (sample points) in S and assigns them a real number.

Note: In the example above, define

Y = number of positives (out of 30).

Thinking of Y as a function, we see that, for example,

Y ((0, 0, 0, ..., 0)) = 0

Y ((1, 0, 0, ..., 0)) = 1

Y ((1, 1, 0, ..., 0)) = 2

Y ((1, 1, 1, ..., 1)) = 30.

The domain of Y is all 1,073,741,824 outcomes in S. The range of Y is

R = {0, 1, 2, 3, ..., 30}.

Terminology: The support of a random variable Y is the set of all possible values that
Y can assume; i.e., it is the range of Y under the mapping Y : S → R. We will denote the
support by R. It is understood that R ⊆ R.

Terminology: We call a random variable Y discrete if its support R is a finite or countable
set. In other words, Y can assume a finite or (at most) a countable number of values.
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Example 3.1. Consider the random experiment of rolling two dice and observing the face
on each. The sample space for this experiment is

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

Assume the dice are “fair” so that each outcome (sample point) is equally likely; i.e., each
outcome has probability 1/36.

Define the random variable
Y = sum of the two faces.

The support of Y is
R = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Because R is a finite set, Y is a discrete random variable.

Q: How do we calculate probabilities like P (Y = 2)? like P (Y = 7)? like P (Y = 21)?
A: The “first principles” approach to doing this would be to find the inverse image of
events like {Y = 2}, {Y = 7}, and {Y = 21} back on the original sample space S and then
carry out the calculations there. For example,

P (Y = 2) = P ({(1, 1)}) =
1

36
.

Similarly,

P (Y = 7) = P ({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}) =
6

36

and
P (Y = 21) = P (∅) = 0.

Important: In general, the probability Y takes on the value y, written P (Y = y), is the
sum of the probabilities of the outcomes (sample points) in S that are assigned the value y
under the mapping Y : S → R. In notation,

P (Y = y) = P ({all ω ∈ S : Y (ω) = y}) =
∑
ω∈S

Y (ω)=y

P ({ω}),

where recall ω denotes an outcome (sample point) in S.

Terminology: The probability mass function (pmf) of a discrete random variable Y
is the function defined by

pY (y) = P (Y = y), for all y.

If the value y is not in the support R, then it is understood that pY (y) = 0. A discrete
random variable’s pmf describes its probability distribution.
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Figure 3.1: Probability mass function (pmf) of Y in Example 3.1.

Important: The pmf of Y in Example 3.1 (and in other examples) can be described by
using a table, a graph, or a formula. In tabular form, we can write

y 2 3 4 5 6 7 8 9 10 11 12
pY (y) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

A graph of the pmf of Y is shown in Figure 3.1 above. Finally, it is also possible to represent
the pmf of Y as a formula; i.e.,

pY (y) =


1

36
(6− |7− y|) , y = 2, 3, ..., 12

0, otherwise.

Exercise: In Example 3.1, find the pmf of

Y = absolute difference of the two faces.

For example, Y ((1, 1)) = |1− 1| = 0, Y ((1, 2)) = |1− 2| = 1, and so on. Depict your pmf in
a table and a graph like above. �
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Properties: The pmf of a discrete random variable Y has the following properties:

1. 0 ≤ pY (y) ≤ 1, for all y

2. the sum of the probabilities over all y equals 1; i.e.,∑
y∈R

pY (y) = 1.

These properties arise as a consequence of Axioms 1 and 2 (see pp 9, notes).

Example 3.2. I recently had a flight from Washington DC to Columbia. The plane had
66 seats on it and each seat was occupied; there were 36 females and 30 males on the flight.
Suppose I selected 5 passengers at random and recorded

Y = number of males (out of 5).

Find the pmf of Y .

Solution. We can think of one outcome (sample point) in the underlying sample space S as
having the following structure:

( ).

For example, the outcomes

( F1 F2 F3 F4 F5 ) and ( M1 F1 F2 M2 M3 ),

would produce the values y = 0 and y = 3, respectively. Note that there are

N =

(
66

5

)
= 8936928

outcomes in the sample space S (the ordering of passenger selection doesn’t matter).

The pmf of Y is the function pY (y) = P (Y = y), which is nonzero when y = 0, 1, 2, 3, 4, 5.
The number of outcomes in S with y males can be found by using the basic rule of counting:

n1 = number of ways to select y males from 30 =

(
30

y

)
n2 = number of ways to select 5− y females from 36 =

(
36

5− y

)
Therefore, there are (

30

y

)(
36

5− y

)
outcomes in S with y males. Assuming each outcome is equally likely,

pY (y) =


(

30
y

)(
36

5−y

)(
66
5

) , y = 0, 1, 2, 3, 4, 5

0, otherwise.
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Figure 3.2: Probability mass function (pmf) of Y in Example 3.2.

Here are the probabilities pY (y) = P (Y = y) listed out in a table (to 3 dp):

y 0 1 2 3 4 5
pY (y) 0.042 0.198 0.348 0.286 0.110 0.016

Note that these probabilities sum to 1, as required. A graph of the pmf of Y is shown in
Figure 3.2 above.

Q: What is the probability I select at least 4 males?
A: We can work directly from the pmf:

P (Y ≥ 4) = P (Y = 4) + P (Y = 5) = pY (4) + pY (5)

≈ 0.110 + 0.016 = 0.126. �

This example illustrates the following general result.

Result: Suppose Y is a discrete random variable with pmf pY (y). The probability of an
event {Y ∈ B} is found by adding the probabilities pY (y) for all y ∈ B; i.e.,

P (Y ∈ B) =
∑
y∈B

pY (y).
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Figure 3.3: Probability mass function (pmf) of Y in Example 3.3.

Example 3.3. An experiment consists of rolling an unbiased die until the first “6” is
observed. Let Y denote the number of rolls needed. The pmf of Y is given by

pY (y) =


1

6

(
5

6

)y−1

, y = 1, 2, 3, ...

0, otherwise.

A graph of the pmf of Y is shown in Figure 3.3 above.

Q: Is this a valid pmf?
A: Clearly, 0 ≤ pY (y) ≤ 1, for each y = 1, 2, 3, .... Do the probabilities pY (y) sum to 1?

Recall: If a ∈ R and |r| < 1, then

∞∑
k=0

ark =
a

1− r
.

This is the formula for an infinite geometric sum. The condition |r| < 1 is needed or else
the sum does not converge.
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Figure 3.4: Probability mass function (pmf) of Y in Example 3.4.

Note that
∞∑
y=1

pY (y) =
∞∑
y=1

1

6

(
5

6

)y−1

=
∞∑
k=0

1

6

(
5

6

)k
=

1
6

1− 5
6

= 1.

Therefore, the pmf pY (y) is valid. �

Example 3.4. An insurance company models the number of claims per day, Y , as a discrete
random variable with pmf

pY (y) =


1

(y + 1)(y + 2)
, y = 0, 1, 2, 3, ...

0, otherwise.

A graph of the pmf of Y is shown in Figure 3.4 above.

Q: Is this a valid pmf?
A: Clearly, 0 ≤ pY (y) ≤ 1, for each y = 0, 1, 2, 3, .... Do the probabilities pY (y) sum to 1?
Note that we can rewrite

1

(y + 1)(y + 2)
=

1

y + 1
− 1

y + 2
.
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It follows that
∑∞

y=0 pY (y) is a telescoping sum; i.e.,

∞∑
y=0

pY (y) =
∞∑
y=0

1

(y + 1)(y + 2)
=

∞∑
y=0

(
1

y + 1
− 1

y + 2

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
+ · · · = 1.

Therefore, the pmf pY (y) is valid. �

3.2 Mathematical expectation

3.2.1 Expected value

Terminology: Suppose Y is a discrete random variable with pmf pY (y) and support R.
The expected value of Y is

E(Y ) =
∑
y∈R

ypY (y).

In other words, E(Y ) is a weighted average of the possible values of Y . Each y ∈ R is
weighted by its corresponding probability pY (y).

Technical note: If the support R is countable but not finite, then E(Y ) may not exist.
This occurs when the sum above does not converge absolutely. In other words, for E(Y ) to
exist, we need ∑

y∈R

|y|pY (y) <∞.

Of course, if R is a finite set, then the sum
∑

y∈R |y|pY (y) is finite and hence E(Y ) exists.

Exercise: Show that E(Y ) in Example 3.4 does not exist.

Example 3.5. Patient responses to a generic drug to control pain are scored on 5-point
scale (1 = lowest pain level; 5 = highest pain level). In a certain population of patients, the
pmf of the response Y is given by

y 1 2 3 4 5
pY (y) 0.38 0.27 0.18 0.11 0.06

A graph of the pmf of Y is shown in Figure 3.5 (next page). The expected value of Y is

E(Y ) =
5∑
y=1

ypY (y)

= 1(0.38) + 2(0.27) + 3(0.18) + 4(0.11) + 5(0.06) = 2.2.
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Figure 3.5: Pmf of Y in Example 3.5. A solid circle identifies where E(Y ) falls.

Interpretations: The expected value, or mean, of Y can be interpreted in different ways:

• E(Y ) is the “center of gravity” on the pmf of Y (see above). It’s located where the
pmf would balance.

• E(Y ) is a “long run average.” In other words, if we observed the value of Y over and
over again (e.g., for a large number of patients in Example 3.5), then the average value
would be close to E(Y ).

To illustrate this last interpretation, I used R’s sample function to sample 1000 values of Y
according to the pmf in Example 3.5:

y = c(1,2,3,4,5)

prob = c(0.38,0.27,0.18,0.11,0.06)

sample.values = sample(y,1000,replace=TRUE,prob=prob)

> mean(sample.values)

[1] 2.203

The mean of these 1000 values was 2.203, which is very close to E(Y ) = 2.2. �
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Figure 3.6: Probability mass function (pmf) of Y in Example 3.6.

Remark: In statistical applications, the expected value E(Y ) is called the population
mean. This is the average value of Y that would result from measuring every individual in
the population (provided, of course, that we could and that the pmf of Y was an accurate
model for the population).

Example 3.6. An entomologist records Y , the number of insects that occupy a test plant.
The pmf of Y is given by

pY (y) =


e−1

y!
, y = 0, 1, 2, 3, ...

0, otherwise.

A graph of the pmf of Y is shown in Figure 3.6 above. Find E(Y ).

Solution. The expected value of Y is

E(Y ) =
∞∑
y=0

ypY (y) =
∞∑
y=0

y
e−1

y!
=
∞∑
y=1

y
e−1

y!
=
∞∑
y=1

e−1

(y − 1)!
= e−1

∞∑
k=0

1

k!
= e−1e1 = 1. �
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Recall: The McLaurin series expansion of f(x) = ex is

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ · · · .

This expansion is valid for all x ∈ R. For example, when x = 1, we have

e = e1 =
∞∑
k=0

1k

k!
=
∞∑
k=0

1

k!
.

In general, recall that the Taylor series expansion of the function f(x) about the point x = a
is given by

f(x) =
∞∑
k=0

f (k)(a)(x− a)k

k!

= f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 +

1

6
f (3)(a)(x− a)3 +

1

24
f (4)(a)(x− a)4 + · · · .

A McLaurin series expansion is a Taylor series expansion when a = 0.

Exercise: Write out f(x) = ln(1+x), f(x) = cos x, and f(x) = 1/(1−x) in their McLaurin
series expansions. Note for which values of x ∈ R the expansion is valid.

Example 3.7. Discrete uniform distribution. Suppose the random variable Y has pmf

pY (y) =


1

N
, y = 1, 2, ..., N

0, otherwise,

where N is a positive integer larger than 1. Find E(Y ).

Solution. The expected value of Y is

E(Y ) =
N∑
y=1

y

(
1

N

)
=

1

N

N∑
y=1

y =
1

N

[
N(N + 1)

2

]
=
N + 1

2
.

Here, we have used the well known fact that the sum of the first N positive integers; i.e.,

N∑
y=1

y = 1 + 2 + 3 + · · ·+N =
N(N + 1)

2
.

This can be proven using induction. If N = 6, then the discrete uniform distribution applies
for the outcome of a fair die:

y 1 2 3 4 5 6
pY (y) 1/6 1/6 1/6 1/6 1/6 1/6

The expected value of Y is E(Y ) = (6 + 1)/2 = 3.5. �
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3.2.2 Functions of random variables

Terminology: Suppose Y is a discrete random variable with pmf pY (y) and support R.
The expected value of g(Y ) is

E[g(Y )] =
∑
y∈R

g(y)pY (y).

In other words, E[g(Y )] is a weighted average of the possible values of g(Y ), where the
probabilities pY (y) play the role of the weights.

Technical note: If the support R is countable but not finite, then E[g(Y )] may not exist.
This occurs when the sum above does not converge absolutely. In other words, for E[g(Y )]
to exist, we need ∑

y∈R

|g(y)|pY (y) <∞.

Example 3.8. In Example 3.5, we used the pmf below to describe the population of patients’
responses to a generic drug to control pain:

y 1 2 3 4 5
pY (y) 0.38 0.27 0.18 0.11 0.06

Find E(Y 2), E(
√
Y ), and E(etY ), where t is a constant.

Solutions. Using the result above, we have

E(Y 2) = 12(0.38) + 22(0.27) + 32(0.18) + 42(0.11) + 52(0.06) = 6.34

E(
√
Y ) =

√
1(0.38) +

√
2(0.27) +

√
3(0.18) +

√
4(0.11) +

√
5(0.06) ≈ 1.43

and

E(etY ) = et(1)(0.38) + et(2)(0.27) + et(3)(0.18) + et(4)(0.11) + et(5)(0.06)

= 0.38et + 0.27e2t + 0.18e3t + 0.11e4t + 0.06e5t. �

Properties: In general, the expectation operator E(·) has certain properties. First, the
expected value of a constant c is c; i.e.,

E(c) = c.

This is easy to show when Y is discrete with pmf pY (y); note that

E(c) =
∑
y∈R

cpY (y) = c
∑
y∈R

pY (y) = c(1) = c.

Second, multiplicative constants can be moved outside the expectation; i.e.,

E[cg(Y )] = cE[g(Y )].
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This is also easy to prove provided that E[g(Y )] exists; note that

E[cg(Y )] =
∑
y∈R

cg(y)pY (y) = c
∑
y∈R

g(y)pY (y) = cE[g(Y )].

Finally, taking expectations is additive; i.e.,

E

[
k∑
j=1

gj(Y )

]
=

k∑
j=1

E[gj(Y )],

provided that E[gj(Y )] exists for each j = 1, 2, ..., k. Note that

E

[
k∑
j=1

gj(Y )

]
=

∑
y∈R

k∑
j=1

gj(y)pY (y)

=
∑
y∈R

g1(y)pY (y) +
∑
y∈R

g2(y)pY (y) + · · ·+
∑
y∈R

gk(y)pY (y)

= E[g1(Y )] + E[g2(Y )] + · · ·+ E[gk(Y )] =
k∑
j=1

E[gj(Y )].

These are called the linearity properties of the expectation.

Another useful result: If g(y) ≥ 0 for all y, then E[g(Y )] ≥ 0. In other words, random
variables that are nonnegative have nonnegative expectations.

3.2.3 Variance

Terminology: Suppose Y is a discrete random variable with mean E(Y ) = µ. The variance
of Y is

σ2 = V (Y ) = E[(Y − µ)2] =
∑
y∈R

(y − µ)2pY (y).

In other words, V (Y ) is a weighted average of the possible values of g(Y ) = (Y −µ)2, where
the probabilities pY (y) play the role of the weights.

Note: The variance V (Y ) is the expected value of a “special” function of Y , namely g(Y ) =
(Y − µ)2. Similar technical requirements arise regarding existence; i.e., we need∑

y∈R

(y − µ)2pY (y) <∞

for V (Y ) to exist.

Terminology: The standard deviation of Y is the (positive) square root of the variance;
i.e.,

σ =
√
σ2 =

√
V (Y ).
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Example 3.9. In Example 3.5, we used the pmf below to describe the population of patients’
responses to a generic drug to control pain:

y 1 2 3 4 5
pY (y) 0.38 0.27 0.18 0.11 0.06

Calculate σ2 = V (Y ) and the standard deviation σ.

Solution. In Example 3.5, we calculated

E(Y ) = µ = 2.2.

Therefore, the variance of Y is

σ2 =
5∑
y=1

(y − µ)2pY (y)

= (1− 2.2)2(0.38) + (2− 2.2)2(0.27) + (3− 2.2)2(0.18)

+ (4− 2.2)2(0.11) + (5− 2.2)2(0.06) = 1.5.

The standard deviation of Y is
σ =
√

1.5 ≈ 1.22.

Properties: The variance of a discrete random variable Y has the following properties and
interpretations:

1. The variance is nonnegative; i.e., V (Y ) ≥ 0. This is easy to see because

V (Y ) = E[(Y − µ)2]

and g(y) = (y−µ)2 ≥ 0 for all y; see the last result at the end of Section 3.2.2 (notes).
Clearly σ ≥ 0 as well.

2. Can V (Y ) ever be zero? It can, but only when all of the probability mass for Y
resides at one point, namely y = µ. A random variable Y with this property is called
a degenerate random variable. Any constant c can be thought of as a degenerate
random variable.

3. Whereas the expected value E(Y ) = µ measures the “center” or the “balance point”
of a distribution, the variance V (Y ) = σ2 (and the standard deviation) measures the
“spread” in the distribution. The larger V (Y ) is, the larger the spread.

4. The variance V (Y ) = σ2 is measured in the squared units of Y . The standard deviation
σ is measured in the same units as Y . Because of this, the standard deviation is easier
for interpretation purposes.
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Variance computing formula: Suppose Y is a (discrete) random variable with mean
E(Y ) = µ. The variance of Y can be calculated as

V (Y ) = E(Y 2)− [E(Y )]2.

Proof. Using the definition of V (Y ), we have

V (Y ) = E[(Y − µ)2] = E(Y 2 − 2µY + µ2)

= E(Y 2)− 2µE(Y ) + µ2

= E(Y 2)− µ2

= E(Y 2)− [E(Y )]2. �

Remark: The variance computing formula is helpful because you only need to have E(Y )
and E(Y 2) to find V (Y ). Note that, in general,

E(Y 2) 6= [E(Y )]2.

The only time this is true is when V (Y ) = 0; i.e., Y is a degenerate random variable.

Example 3.10. Discrete uniform distribution. Suppose the random variable Y has pmf

pY (y) =


1

N
, y = 1, 2, ..., N

0, otherwise,

where N is a positive integer larger than 1. Find V (Y ).

Solution. We showed in Example 3.7 that

E(Y ) =
N + 1

2
.

Therefore, we only need to find E(Y 2). From the definition of expectation, we have

E(Y 2) =
N∑
y=1

y2

(
1

N

)
=

1

N

N∑
y=1

y2 =
1

N

[
N(N + 1)(2N + 1)

6

]
=

(N + 1)(2N + 1)

6
.

Here, we have used the well known fact that

N∑
y=1

y2 = 12 + 22 + 32 + · · ·+N2 =
N(N + 1)(2N + 1)

6
.

Therefore, from the variance computing formula, we have

V (Y ) = E(Y 2)− [E(Y )]2 =
(N + 1)(2N + 1)

6
−
(
N + 1

2

)2

=
N2 − 1

12
. �
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Result: Suppose Y is a (discrete) random variable and a and b are constants. Then

V (a+ bY ) = b2V (Y ).

Taking b = 0, we see that V (a) = 0 for any constant a. This makes sense intuitively. The
variance is a measure of variability for a random variable; a constant (such as a) does not
vary. Also, by taking a = 0, we see that V (bY ) = b2V (Y ).

3.3 Moment-generating functions

Terminology: The kth moment of a (discrete) random variable Y is

µ′k = E(Y k).

For example, the first four moments are

E(Y ) = 1st moment

E(Y 2) = 2nd moment

E(Y 3) = 3rd moment

E(Y 4) = 4th moment

Remark: Note that the first moment E(Y ) is simply the expected value (or mean) or Y ,
which describes the “center” of the distribution of Y . Recall that

V (Y ) = E(Y 2)− [E(Y )]2

so the first two moments can be used to find V (Y ), which describes the “spread” in the
distribution of Y .

Terminology: Suppose Y is a discrete random variable with pmf pY (y) and support R.
The moment-generating function (mgf) of Y is

mY (t) = E(etY ) =
∑
y∈R

etypY (y),

provided this expectation is finite for all t in an open neighborhood about t = 0; i.e., ∃b > 0
such that E(etY ) < ∞ ∀t ∈ (−b, b). If no such b > 0 exists, then the moment generating
function of Y does not exist.

Example 3.11. In Example 3.6, we considered the discrete random variable Y with pmf

pY (y) =


e−1

y!
, y = 0, 1, 2, 3, ...

0, otherwise.

Find the mgf of Y .

PAGE 50



STAT 511: CHAPTER 3 JOSHUA M. TEBBS

Solution. The mgf of Y is

mY (t) = E(etY ) =
∞∑
y=0

ety
e−1

y!
= e−1

∞∑
y=0

(et)y

y!
= e−1 exp(et) = exp(et − 1).

Above we used the fact that
∑∞

y=0(et)y/y! is the McLaurin series expansion of exp(et), which
is a valid expansion for all t ∈ R.

Example 3.12. Suppose Y is a discrete random variable with pmf

pY (y) =


(

1

2

)y
, y = 1, 2, 3, ...

0, otherwise.

Find the mgf of Y .

Solution. The mgf of Y is

mY (t) = E(etY ) =
∞∑
y=1

ety
(

1

2

)y
=
∞∑
y=1

(
et

2

)y
=

[
∞∑
y=0

(
et

2

)y]
− 1.

Note that the sum
∞∑
y=0

(
et

2

)y
is an infinite geometric sum with common ratio

r =
et

2
< 1 ⇐⇒ t < ln 2.

Therefore, for all t < ln 2, this sum converges and hence

mY (t) =

[
∞∑
y=0

(
et

2

)y]
− 1 =

1

1− et

2

− 1

=
2

2− et
− 1 =

et

2− et
.

Q: Why are mgfs useful?
A: Moment generating functions are functions that generate moments.

Important: If Y is a random variable with mgf mY (t), then

E(Y k) = m
(k)
Y (0),

where

m
(k)
Y (0) =

dk

dtk
mY (t)

∣∣∣∣
t=0

.

This shows how the moments of Y can be found by differentiation. Note that derivatives are
taken with respect to t.
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Proof. Assume Y is a discrete random variable with pmf pY (y) and support R. For k = 1,

d

dt
mY (t) =

d

dt

∑
y∈R

etypY (y)
?
=

∑
y∈R

d

dt
etypY (y)

=
∑
y∈R

yetypY (y) = E(Y etY ).

Thus,

d

dt
mY (t)

∣∣∣∣∣
t=0

= E(Y etY )
∣∣∣
t=0

= E(Y ).

Taking higher-order derivatives, it follows that

dk

dtk
mY (t)

∣∣∣∣
t=0

= E(Y k),

for any integer k ≥ 1. �

Remark: In the argument above, we needed to assume that the interchange of the derivative
and sum is justified. When the mgf exists, this interchange is justified.

Interesting: Writing mY (t) in its McLaurin series expansion, we see that

mY (t) = mY (0) +
m

(1)
Y (0)

1!
(t− 0) +

m
(2)
Y (0)

2!
(t− 0)2 +

m
(3)
Y (0)

3!
(t− 0)3 + · · ·

= 1 + E(Y )t+
E(Y 2)

2
t2 +

E(Y 3)

6
t3 +

E(Y 4)

24
t4 + · · ·

=
∞∑
k=0

E(Y k)

k!
tk.

You can also see that

E(Y k) =
dk

dtk
mY (t)

∣∣∣∣
t=0

by differentiating the RHS of mY (t) written in its expansion (and evaluating at t = 0).

Example 3.13. Suppose Y is a discrete random variable with pmf

pY (y) =


(

1

2

)y
, y = 1, 2, 3, ...

0, otherwise.

Find E(Y ) and V (Y ).

Solution. Using the definition of mathematical expectation, the first two moments of Y are

E(Y ) =
∞∑
y=1

y

(
1

2

)y
E(Y 2) =

∞∑
y=1

y2

(
1

2

)y
.

PAGE 52



STAT 511: CHAPTER 3 JOSHUA M. TEBBS

Neither of these sums are straightforward to calculate. Let’s use the mgf of Y instead. Recall
in Example 3.12 we found the mgf of Y to be

mY (t) =
et

2− et
.

The first two derivatives of mY (t) are

d

dt
mY (t) =

2et

(2− et)2

d2

dt2
mY (t) =

2et(et + 2)

(2− et)3
.

Therefore,

E(Y ) =
d

dt
mY (t)

∣∣∣∣∣
t=0

=
2e0

(2− e0)2
= 2.

The second moment is

E(Y 2) =
d2

dt2
mY (t)

∣∣∣∣∣
t=0

=
2e0(e0 + 2)

(2− e0)3
= 6.

Applying the variance computing formula, we have

V (Y ) = E(Y 2)− [E(Y )]2 = 6− 4 = 2.

Lesson: In this example and elsewhere, finding E(Y ) and E(Y 2) using the definition of
mathematical expectation can be difficult. Using mgfs can be much easier. In other examples
(e.g., Example 3.5, etc.), finding E(Y ) and E(Y 2) using the definition of mathematical
expectation is easy. There is no need to use mgfs in these examples.

3.4 Binomial distribution

Important: Many experiments consist of a sequence of “trials,” where

(i) each trial results in either a “success” or a “failure”

(ii) the probability of “success,” denoted by p, 0 < p < 1, is the same on every trial

(iii) the trials are mutually independent.

Trials that obey these three properties are called Bernoulli trials.

Terminology: Let Y denote the number of successes out of n Bernoulli trials. Then Y
has a binomial distribution with parameters n (the number of trials) and probability of
success p. We write Y ∼ b(n, p).
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Example 3.14. Consider each of the following situations involving a binomial random
variable. Are you satisfied with the three Bernoulli trial assumptions in each case?

• I flip a coin n = 25 times and record Y , the number of tails. If the coin is fair, then
Y ∼ b(n = 25, p = 0.5).

• In an agricultural study, it is determined that 40 percent of all plots respond to a
certain treatment. Four plots are observed. If Y denotes the number of plots that
respond to the treatment, then Y ∼ b(n = 4, p = 0.4).

• In a biology experiment, 30 albino rats are injected with a drug that inhibits the
synthesis of protein. The probability an individual rat will die from the drug before
the study is complete is 0.15. If Y denotes the number of rats that die before the study
is complete, then Y ∼ b(n = 30, p = 0.15).

• Auditors estimate that 22 percent of insurance claims of a certain type are fraudulent.
There are 189 claims this year. If Y denotes the number of fraudulent claims this year,
then Y ∼ b(n = 189, p = 0.22). �

Note: Our goal is to derive the pmf of Y ∼ b(n, p); i.e., to derive a formula for

pY (y) = P (Y = y).

Among n Bernoulli trials, how can we get exactly y successes? We can think of one outcome
(sample point) in the underlying sample space S as having the following structure

( ... )

where each position (trial) is occupied by an S (for a “success”) or an F (for a “failure”).
For example, if n = 10, one possible outcome looks like

( S F F S S F S S F S )

and corresponds to y = 6 successes.

In general, any ordering of y successes (S’s) and n− y failures (F’s) occurs with probability

p× p× · · · × p︸ ︷︷ ︸
y successes

× (1− p)× (1− p)× · · · × (1− p)︸ ︷︷ ︸
n−y failures

= py(1− p)n−y.

This is true because the trials are mutually independent and the probability of success (and
the probability of failure) is the same on every trial. Thus, all we have to do is count the
number of outcomes in the sample space with y successes; each one of these outcomes has
the same probability py(1−p)n−y. Counting this is the same as counting the number of ways
to choose y positions (among the n) to contain a success S; there are

(
n
y

)
ways to do this.

PMF: The pmf of Y ∼ b(n, p) is

pY (y) =


(
n

y

)
py(1− p)n−y, y = 0, 1, 2, ..., n

0, otherwise.
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Recall: The binomial expansion of (a+ b)n is given by

(a+ b)n =
n∑
r=0

(
n

r

)
an−rbr.

Q: Is the binomial pmf pY (y) valid?
A: Clearly, 0 ≤ pY (y) ≤ 1, for each y = 0, 1, 2, ..., n. Do the probabilities pY (y) sum to 1?
Letting a = 1− p, b = p, and r = y in the binomial expansion formula above, we have

[(1− p) + p]n =
n∑
y=0

(
n

y

)
py(1− p)n−y.

The LHS clearly equals 1. The RHS is the b(n, p) pmf. Thus, pY (y) is valid. �

MGF: The mgf of Y ∼ b(n, p) is

mY (t) = E(etY ) =
n∑
y=0

ety
(
n

y

)
py(1− p)n−y =

n∑
y=0

(
n

y

)
(pet)y(1− p)n−y = (q + pet)n,

where q = 1− p. The last step follows from noting
∑n

y=0

(
n
y

)
(pet)y(1− p)n−y is the binomial

expansion of (q + pet)n. �

Mean/Variance: The mean and variance of Y ∼ b(n, p) are

E(Y ) = np

V (Y ) = np(1− p).

Proof. The first derivative of mY (t) with respect to t is

m′Y (t) =
d

dt
mY (t) =

d

dt
(q + pet)n = n(q + pet)n−1pet.

Thus,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

= n(q + pe0)n−1pe0 = n(q + p)n−1p = np,

because q + p = 1. To find V (Y ), we can find the second moment E(Y 2) and then use the
variance computing formula. The second derivative of mY (t) with respect to t is

d2

dt2
mY (t) =

d

dt
n(q + pet)n−1pet︸ ︷︷ ︸

m′Y (t)

= n(n− 1)(q + pet)n−2(pet)2 + n(q + pet)n−1pet.

Thus,

E(Y 2) =
d2

dt2
mY (t)

∣∣∣∣
t=0

= n(n− 1)(q + pe0)n−2(pe0)2 + n(q + pe0)n−1pe0 = n(n− 1)p2 + np.

Finally,

V (Y ) = E(Y 2)− [E(Y )]2 = n(n− 1)p2 + np− (np)2

= np(1− p). �
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Note: WMS show how to derive E(Y ) by writing

E(Y ) =
n∑
y=0

y

(
n

y

)
py(1− p)n−y

and then manipulating this sum (see pp 107-108). Calculating E(Y 2) directly is difficult, so
the authors instead find the second factorial moment

E[Y (Y − 1)] =
n∑
y=0

y(y − 1)

(
n

y

)
py(1− p)n−y.

Note that

E[Y (Y − 1)] = E(Y 2 − Y ) = E(Y 2)− E(Y ) =⇒ E(Y 2) = E[Y (Y − 1)] + E(Y ).

Factorial moments are discussed in Section 3.10 (pp 143-146, WMS).

Example 3.15. Physicians conjecture that 35 percent of renal cell carcinoma patients will
respond positively to a new drug treatment. A small clinical trial tests the new drug in 30
patients. Let Y denote the number of patients who will respond positively to the drug. If the
Bernoulli trial assumptions hold for the patients (and the physicians’ conjecture is correct),
then Y ∼ b(n = 30, p = 0.35). The pmf of Y is shown in Figure 3.7 (next page).

Q: What is the probability exactly 10 patients respond positively? at most 10? at least 10?
A: We use the b(n = 30, p = 0.35) pmf. The probability exactly 10 patients respond
positively is

P (Y = 10) = pY (10) =

(
30

10

)
(0.35)10(1− 0.35)30−10 ≈ 0.150.

The probability at most 10 patients respond positively is

P (Y ≤ 10) =
10∑
y=0

(
30

y

)
(0.35)y(1− 0.35)30−y ≈ 0.508.

The probability at least 10 patients respond positively is

P (Y ≥ 10) =
30∑
y=10

(
30

y

)
(0.35)y(1− 0.35)30−y = 1−

9∑
y=0

(
30

y

)
(0.35)y(1− 0.35)30−y

︸ ︷︷ ︸
= P (Y≤9)

≈ 0.642.

Here is the R code that will perform these calculations:

> dbinom(10,30,0.35)

[1] 0.1502173

> pbinom(10,30,0.35)

[1] 0.5077582

> 1-pbinom(9,30,0.35)

[1] 0.6424591
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Figure 3.7: Pmf of Y ∼ b(n = 30, p = 0.35) in Example 3.15.

Q: What are E(Y ) and V (Y )?
A: The mean of Y is

E(Y ) = np = 30(0.35) = 10.5 patients.

Therefore, we would expect 10.5 patients to respond positively. The variance of Y is

V (Y ) = np(1− p) = 30(0.35)(1− 0.35) = 6.825 (patients)2.

The standard deviation is σ =
√

6.825 ≈ 2.61 patients. �

Important: In the b(n, p) family, when n = 1, the binomial pmf reduces to

pY (y) =

{
py(1− p)1−y, y = 0, 1

0, otherwise.

This is called the Bernoulli distribution. Shorthand notation is Y ∼ b(1, p) or Y ∼
Bernoulli(p). The Bernoulli distribution is used to model binary (0-1) outcomes; e.g., suc-
cess/failure, agree/disagree, disease/healthy, etc.
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3.5 Geometric distribution

Note: Recall the Bernoulli trial assumptions:

(i) each trial results in either a “success” or a “failure”

(ii) the probability of “success,” denoted by p, 0 < p < 1, is the same on every trial

(iii) the trials are mutually independent.

Terminology: Suppose Bernoulli trials are continually observed. Let Y denote the number
of trials to observe the first success. Then Y has a geometric distribution with probability
of success p. We write Y ∼ geom(p).

PMF: The pmf of Y ∼ geom(p) is

pY (y) =

{
(1− p)y−1p, y = 1, 2, 3, ...

0, otherwise.

The form of this pmf makes sense; i.e., if the first success occurs on the yth trial, then the
first y − 1 trials were failures. Each failure occurs with probability 1− p. The yth trial is a
success (with probability p). Everything gets multiplied together because the Bernoulli trial
outcomes are mutually independent.

Q: Is the geometric pmf pY (y) valid?
A: Clearly, 0 ≤ pY (y) ≤ 1, for each y = 1, 2, 3, .... Do the probabilities pY (y) sum to 1? We
have

∞∑
y=1

(1− p)y−1p = p
∞∑
x=0

(1− p)x =
p

1− (1− p)
= 1.

In the last step, we realize that
∑∞

x=0(1 − p)x is an infinite geometric sum with common
ratio 1− p. �

MGF: The mgf of Y ∼ geom(p) is

mY (t) = E(etY ) =
∞∑
y=1

ety(1− p)y−1p =
p

q

∞∑
y=1

(qet)y

=
p

q

[
∞∑
y=0

(qet)y − 1

]

=
p

q

(
1

1− qet
− 1

)
=

pet

1− qet
,

where q = 1 − p. Note that the infinite geometric sum
∑∞

y=0(qet)y above converges and is
equal to 1/(1− qet) if and only if

qet < 1⇐⇒ t < − ln q.

Therefore, the mgf exists and is given by the formula above. �
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Mean/Variance: The mean and variance of Y ∼ geom(p) are

E(Y ) =
1

p

V (Y ) =
q

p2
,

where q = 1− p.

Proof. The first derivative of mY (t) with respect to t is

m′Y (t) =
d

dt
mY (t) =

d

dt

(
pet

1− qet

)
=
pet(1− qet)− pet(−qet)

(1− qet)2
=

pet

(1− qet)2
.

Therefore,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

=
pe0

(1− qe0)2
=

p

(1− q)2
=

1

p
.

To find V (Y ), we can find the second moment E(Y 2) and then use the variance computing
formula. The second derivative of mY (t) with respect to t is

d2

dt2
mY (t) =

pet(1− qet)2 − 2pet(1− qet)(−qet)
(1− qet)4

.

Therefore,

E(Y 2) =
d2

dt2
mY (t)

∣∣∣∣
t=0

=
pe0(1− qe0)2 − 2pe0(1− qe0)(−qe0)

(1− qe0)4
=
p3 + 2p2q

p4
=
p+ 2q

p2
.

Finally,

V (Y ) = E(Y 2)− [E(Y )]2 =
p+ 2q

p2
−
(

1

p

)2

=
q

p2
. �

Note: WMS show how to derive E(Y ) and V (Y ) directly by writing

E(Y ) =
∞∑
y=1

y(1− p)y−1p

E[Y (Y − 1)] =
∞∑
y=1

y(y − 1)(1− p)y−1p

and then manipulating these sums; see pp 116-117.

Example 3.16. An EPA engineer is tasked with observing water specimens from lakes in
northeast Georgia. In this region, each specimen has a 20 percent chance of containing a
particular organic pollutant. Let Y denote the number of specimens observed to find the
first one containing the pollutant. If the Bernoulli trial assumptions hold for the specimens,
then Y ∼ geom(p = 0.20). The pmf of Y is shown in Figure 3.8 (next page).

PAGE 59



STAT 511: CHAPTER 3 JOSHUA M. TEBBS

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

y

P
M

F

Figure 3.8: Pmf of Y ∼ geom(p = 0.20) in Example 3.16.

Here are the first few probabilities:

P (Y = 1) = pY (1) = (1− 0.20)1−1(0.20) = 0.20

P (Y = 2) = pY (2) = (1− 0.20)2−1(0.20) = 0.16

P (Y = 3) = pY (3) = (1− 0.20)3−1(0.20) = 0.128

P (Y = 4) = pY (4) = (1− 0.20)4−1(0.20) = 0.1024

P (Y = 5) = pY (5) = (1− 0.20)5−1(0.20) = 0.08192.

The probability the first water specimen containing the pollutant is observed among the first
five specimens is

P (Y ≤ 5) = P (Y = 1) + P (Y = 2) + P (Y = 3) + P (Y = 4) + P (Y = 5)

=
5∑
y=1

(1− 0.20)y−1(0.20) = 0.67232. �

> pgeom(5-1,0.20)

[1] 0.67232
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3.6 Negative binomial distribution

Note: Recall the Bernoulli trial assumptions:

(i) each trial results in either a “success” or a “failure”

(ii) the probability of “success,” denoted by p, 0 < p < 1, is the same on every trial

(iii) the trials are mutually independent.

Terminology: Suppose Bernoulli trials are continually observed. Let Y denote the number
of trials to observe the rth success, where r ≥ 1. Then Y has a negative binomial
distribution with waiting parameter r and probability of success p. We write Y ∼ nib(r, p).

Note: When r = 1, the nib(r, p) distribution reduces to the geom(p) distribution. We can
think of the negative binomial distribution as a generalization of the geometric; i.e., where
one is “waiting” for more successes.

PMF: The pmf of Y ∼ nib(r, p) is

pY (y) =


(
y − 1

r − 1

)
pr(1− p)y−r, y = r, r + 1, r + 2, ...

0, otherwise.

The form of this pmf can be explained intuitively. If the rth success occurs on the yth
trial, then r − 1 successes must have occurred during the first y − 1 trials. The number of
sample points (in the underlying sample space) where this occurs is

(
y−1
r−1

)
, which counts the

number of ways one can choose the locations of r − 1 successes among the 1st y − 1 trials.
Because the trials are mutually independent, the probability of each of these sample points
is pr−1(1− p)y−r. Therefore, the probability of exactly r− 1 successes among the first y − 1
trials is

(
y−1
r−1

)
pr−1(1 − p)y−r. On the yth trial, we observe the rth success (this occurs with

probability p). Because the yth trial is independent of the previous y − 1 trials, we have

P (Y = y) =

(
y − 1

r − 1

)
pr−1(1− p)y−r︸ ︷︷ ︸

pertains to 1st y−1 trials

× p =

(
y − 1

r − 1

)
pr(1− p)y−r.

MGF: The mgf of Y ∼ nib(r, p) is (
pet

1− qet

)r
,

for t < − ln q, where q = 1− p.

Note: When r = 1, the nib(r, p) mgf reduces to the geom(p) mgf. Interesting!
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Proof. The mgf of Y ∼ nib(r, p) is

mY (t) = E(etY ) =
∞∑
y=r

ety
(
y − 1

r − 1

)
pr(1− p)y−r

= (pet)r
∞∑
y=r

(
y − 1

r − 1

)
(qet)y−r︸ ︷︷ ︸

= (1−qet)−r

=

(
pet

1− qet

)r
,

for 1 − qet > 0 ⇐⇒ t < − ln q. That
∑∞

y=r

(
y−1
r−1

)
(qet)y−r = (1 − qet)−r follows from the

lemma below. �

Lemma. Suppose r is a nonnegative integer. Then

∞∑
y=r

(
y − 1

r − 1

)
(qet)y−r = (1− qet)−r.

Proof. Consider the function f(w) = (1− w)−r, where r is a nonnegative integer. It is easy
to show that

f ′(w) = r(1− w)−(r+1)

f ′′(w) = r(r + 1)(1− w)−(r+2)

f ′′′(w) = r(r + 1)(r + 2)(1− w)−(r+3),

and so on. In general, f (z)(w) = r(r + 1) · · · (r + z − 1)(1− w)−(r+z), where f (z)(w) denotes
the zth derivative of f with respect to w. Note that

f (z)(w)
∣∣∣
w=0

= r(r + 1) · · · (r + z − 1).

Now writing f(w) in its McLaurin Series expansion, we have

f(w) =
∞∑
z=0

f (z)(0)

z!
wz =

∞∑
z=0

r(r + 1) · · · (r + z − 1)

z!
wz =

∞∑
z=0

(
r + z − 1

r − 1

)
wz.

Letting w = qet and z = y − r proves the lemma. �

Mean/Variance: The mean and variance of Y ∼ nib(r, p) are

E(Y ) =
r

p

V (Y ) =
rq

p2
,

where q = 1 − p. Note again these formulae for E(Y ) and V (Y ) reduce to those for the
geometric distribution when r = 1.

Proof. Exercise. �
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Figure 3.9: Pmf of Y ∼ nib(r = 4, p = 0.15) in Example 3.17.

Example 3.17. At an automotive plant, 15 percent of all paint batches sent to the lab
for chemical analysis do not conform to specifications. Let Y denote the number of batches
to find the 4th one that does not conform. If the Bernoulli trial assumptions hold for the
batches, then Y ∼ nib(r = 4, p = 0.15). The pmf of Y is shown in Figure 3.9 (above).

Q: What is the probability no more than three nonconforming batches will be observed
among the first 30 batches sent to the lab?
A: This will occur when the fourth nonconforming batch is observed on the 31st batch sent
to the lab, the 32nd, the 33rd, etc. Therefore,

P (Y ≥ 31) = 1− P (Y ≤ 30)

= 1−
30∑
y=4

(
y − 1

4− 1

)
(0.15)4(0.85)y−4 ≈ 0.322. �

> 1-pnbinom(30-4,4,0.15)

[1] 0.3216599
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3.7 Hypergeometric distribution

Setting: Consider a population of N objects and suppose each object belongs to one of two
dichotomous classes: Class 1 or Class 2. For example, the objects and classes might be

Poker chips: red/blue
People: diseased/healthy
Plots of land: respond to treatment/not.

In the population of interest, we have

N = total number of objects

r = number of objects in Class 1

N − r = number of objects in Class 2.

We sample n objects from the population at random and without replacement. Define

Y = number of objects in Class 1 (among the n sampled).

Then Y has a hypergeometric distribution with population size N , sample size n, and
number of Class 1 objects r. We write Y ∼ hyper(N, n, r).

Remark: We have already seen an example of this distribution in Example 3.2 (notes). In
this example, the “objects” were passengers and the classes were male/female; i.e.,

N = total number of passengers = 66

r = number of males = 30

N − r = number of females = 36.

We sampled n = 5 passengers at random and without replacement from the population of
66 passengers and recorded Y , the number of males among those sampled. In this example,
Y ∼ hyper(N = 66, n = 5, r = 30). By conceptualizing the selection of n = 5 passengers as
a random experiment, we derived the pmf of Y to be

pY (y) =


(

30
y

)(
36

5−y

)(
66
5

) , y = 0, 1, 2, 3, 4, 5

0, otherwise.

The hypergeometric pmf derivation generalizes immediately.

PMF: The pmf of Y ∼ hyper(N, n, r) is

pY (y) =


(
r
y

)(
N−r
n−y

)(
N
n

) ,
y = 0, 1, 2, ..., n

y ≤ r, n− y ≤ N − r

0, otherwise.
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Comparison: The motivation for the hypergeometric distribution should remind us of
the underlying framework for the binomial; i.e., we record the number of Class 1 objects
(“successes”) out of n (“trials”). The difference here is that

• the population size N is finite

• sampling is done without replacement.

To understand further, suppose

p =
r

N
= proportion of Class 1 objects in the population.

Because sampling from the population is done without replacement, the value of p changes
from trial to trial. This violates the Bernoulli trial assumptions, so technically the binomial
model does not apply. However, one can show mathematically that

lim
N→∞
r/N→p

(
r

y

)(
N − r
n− y

)
(
N

n

) =

(
n

y

)
py(1− p)n−y︸ ︷︷ ︸
b(n,p) pmf

.

This result implies that if the population size N is “large,” the hyper(N, n, r) distribution
and the b(n, p = r/N) distribution should be very close to each other even when one samples
without replacement. Of course, if one samples from a population with replacement, then
p = r/N remains fixed and hence the binomial model applies regardless of how large N is.

Example 3.18. A supplier ships parts to a company in lots of 1000 parts. Suppose a
lot contains 100 defective parts and 900 non-defective parts. An operator selects 10 parts
at random and without replacement. What is the probability he selects no more than 2
defective parts?

Hypergeometric: Because sampling is done without replacement, a hypergeometric model
applies. We recognize

N = total number of parts = 1000

r = number of defectives = 100

N − r = number of non-defectives = 900.

Let Y denote the number of defective parts (i.e., “Class 1 objects”) out of n = 10. Then
Y ∼ hyper(N = 1000, n = 10, r = 100) and

P (Y ≤ 2) = P (Y = 0) + P (Y = 1) + P (Y = 2)

=

(
100
0

)(
900
10

)(
1000
10

) +

(
100
1

)(
900
9

)(
1000
10

) +

(
100
2

)(
900
8

)(
1000
10

)
≈ 0.3469 + 0.3894 + 0.1945 = 0.9308.

> phyper(2,100,900,10)

[1] 0.9307629
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Figure 3.10: Example 3.18. Left: Pmf of Y ∼ hyper(N = 1000, n = 10, r = 100). Right:
Pmf of Y ∼ b(n = 10, p = 0.10).

Binomial: The population proportion of defective parts is

p =
100

1000
= 0.10.

Therefore, the b(n = 10, p = 0.10) model should offer a good approximation to the (exact)
answer obtained from the hypergeometric calculation. We have

P (Y ≤ 2) = P (Y = 0) + P (Y = 1) + P (Y = 2)

=

(
10

0

)
(0.10)0(0.90)10 +

(
10

1

)
(0.10)1(0.90)9 +

(
10

2

)
(0.10)2(0.90)8

≈ 0.3487 + 0.3874 + 0.1937 = 0.9298.

> pbinom(2,10,0.10)

[1] 0.9298092

Figure 3.10 (above) shows the hypergeometric and binomial pmfs used in this problem. Note
that they are nearly identical in appearance. �

Q: Is the hypergeometric pmf pY (y) valid?
A: Clearly, 0 ≤ pY (y) ≤ 1, for each y = 1, 2, 3, .... Do the probabilities pY (y) sum to 1? The
answer is yes, of course, but showing this is not trivial. It suffices to show

n∑
y=0

(
r

y

)(
N − r
n− y

)
=

(
N

n

)
.

See Exercise 3.216 (pp 156, WMS).
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Mean/Variance: The mean and variance of Y ∼ hyper(N, n, r) are

E(Y ) = n
( r
N

)
V (Y ) = n

( r
N

)(N − r
N

)(
N − n
N − 1

)
.

Deriving these formulas is not trivial either. The mgf of Y ∼ hyper(N, n, r) exists, but its
form is not very friendly. Therefore, to derive E(Y ), we will have to appeal directly to the
definition of expected value; note that

E(Y ) =
n∑
y=0

ypY (y) =
n∑
y=0

y

(
r
y

)(
N−r
n−y

)(
N
n

) =
n∑
y=1

y

(
r
y

)(
N−r
n−y

)(
N
n

) .

The denominator in the pmf of Y can be written as(
N

n

)
=

N !

n!(N − n)!
=
N

n

[
(N − 1)!

(n− 1)!(N − n)!

]
=
N

n

(
N − 1

n− 1

)
.

Therefore,

E(Y ) =
n

N

n∑
y=1

y

(
r
y

)(
N−r
n−y

)(
N−1
n−1

) =
n

N

n∑
y=1

y

r!
y!(r−y)!

(N−r)!
(n−y)!(N−r−n+y)!(

N−1
n−1

)
=

nr

N

n∑
y=1

(r−1)!
(y−1)!(r−y)!

(N−r)!
(n−y)!(N−r−n+y)!(
N−1
n−1

)
x=y−1

=
nr

N

n−1∑
x=0

(r−1)!
x!(r−1−x)!

(N−r)!
(n−1−x)!(N−r−n+1+x)!(

N−1
n−1

)
=

nr

N

n−1∑
x=0

(
r−1
x

)(
N−r
n−1−x

)(
N−1
n−1

) .

However,
n−1∑
x=0

(
r−1
x

)(
N−r
n−1−x

)(
N−1
n−1

) =
n−1∑
x=0

(
r−1
x

)(
(N−1)−(r−1)

(n−1)−x

)(
N−1
n−1

) = 1

because the summand is the pmf of X ∼ hyper(N − 1, n − 1, r − 1) and we sum over the
support of this random variable; i.e., x = 0, 1, ..., n− 1. Thus, the result. �

Note: To derive V (Y ), it is easier to first calculate the second factorial moment

E[Y (Y − 1)] =
n∑
y=0

y(y − 1)

(
r
y

)(
N−r
n−y

)(
N
n

) .

Recall that

E[Y (Y − 1)] = E(Y 2 − Y ) = E(Y 2)− E(Y ) =⇒ E(Y 2) = E[Y (Y − 1)] + E(Y ).
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Interesting: If the population size N →∞ so that r/N → p ∈ (0, 1), note that

E(Y ) = n
( r
N

)
→ np,

the mean of the b(n, p) distribution. Similarly,

V (Y ) = n
( r
N

)(N − r
N

)(
N − n
N − 1

)
→ np(1− p),

which is the variance of the b(n, p) distribution. Neither result is surprising given the result
on pp 65 (notes); i.e., if the hyper(N, n, r) pmf converges to the b(n, p) pmf as N →∞ and
r/N → p, then the corresponding moments should converge as well.

3.8 Poisson distribution

Setting: Suppose we count the number of “occurrences” in a continuous interval of time
(or space). A Poisson process enjoys the following properties:

1. the number of occurrences in non-overlapping intervals are independent random vari-
ables

2. the probability of an occurrence in a sufficiently short interval is proportional to the
length of the interval

3. the probability of 2 or more occurrences in a sufficiently short interval is zero.

Suppose a counting process satisfies the three conditions above. Define

Y = the number of occurrences in a unit interval of time (or space).

Our goal is to find an expression for pY (y) = P (Y = y), the pmf of Y .

Derivation: Partition the unit interval [0, 1] into n subintervals, each of size 1/n.

• If n is sufficiently large (i.e., much larger than y), then we can approximate the prob-
ability y events occur in the unit interval by finding the probability that exactly one
event (occurrence) occurs in exactly y of the subintervals.

• By Property (2), we know that the probability of one event in any one subinterval
is proportional to the subinterval’s length, say λ/n, where λ is the proportionality
constant.

• By Property (3), the probability of more than one occurrence in any subinterval is zero
(for n large).
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• Consider the occurrence/non-occurrence of an event in each subinterval as a Bernoulli
trial. By Property (1), we have a sequence of n Bernoulli trials, each with probability
of “success” p = λ/n. Thus, a binomial (approximate) calculation gives

P (Y = y) ≈
(
n

y

)(
λ

n

)y (
1− λ

n

)n−y
.

To improve the approximation for P (Y = y), we let n grow large without bound; i.e., let
n→∞. We have

lim
n→∞

P (Y = y) = lim
n→∞

(
n

y

)(
λ

n

)y (
1− λ

n

)n−y
= lim

n→∞

n!

y!(n− y)!
λy
(

1

n

)y (
1− λ

n

)n(
1

1− λ
n

)y

= lim
n→∞

n(n− 1) · · · (n− y + 1)

ny︸ ︷︷ ︸
an

λy

y!︸︷︷︸
bn

(
1− λ

n

)n
︸ ︷︷ ︸

cn

(
1

1− λ
n

)y

︸ ︷︷ ︸
dn

.

Now, the limit of the product is the product of the limits:

lim
n→∞

an = lim
n→∞

n(n− 1) · · · (n− y + 1)

ny
= 1 lim

n→∞
bn = lim

n→∞

λy

y!
=
λy

y!

lim
n→∞

cn = lim
n→∞

(
1− λ

n

)n
= e−λ lim

n→∞
dn = lim

n→∞

(
1

1− λ
n

)y

= 1.

We have shown that

lim
n→∞

P (Y = y) =
λye−λ

y!
.

We say that Y follows a Poisson distribution with parameter λ. Shorthand notation is
Y ∼ Poisson(λ).

PMF: The pmf of Y ∼ Poisson(λ) is

pY (y) =


λye−λ

y!
, y = 0, 1, 2, ...

0, otherwise.

Q: Is the Poisson pmf pY (y) valid?
A: Clearly, 0 ≤ pY (y) ≤ 1, for each y = 0, 1, 2, .... Do the probabilities pY (y) sum to 1? We
have

∞∑
y=0

λye−λ

y!
= e−λ

∞∑
y=0

λy

y!
= e−λeλ = 1.

Recall that
∑∞

y=0 λ
y/y! is the McLaurin series expansion of eλ. �

PAGE 69



STAT 511: CHAPTER 3 JOSHUA M. TEBBS

MGF: The mgf of Y ∼ Poisson(λ) is

mY (t) = E(etY ) =
∞∑
y=0

ety
λye−λ

y!
= e−λ

∞∑
y=0

(λet)y

y!︸ ︷︷ ︸
= exp(λet)

= e−λeλe
t

= exp[λ(et − 1)]. �

Mean/Variance: The mean and variance of Y ∼ Poisson(λ) are

E(Y ) = λ

V (Y ) = λ.

Proof. The first derivative of mY (t) with respect to t is

m′Y (t) =
d

dt
mY (t) =

d

dt
exp[λ(et − 1)] = λet exp[λ(et − 1)].

Thus,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

= λe0 exp[λ(e0 − 1)] = λ.

To find V (Y ), we can find the second moment E(Y 2) and then use the variance computing
formula. The second derivative of mY (t) with respect to t is

d2

dt2
mY (t) =

d

dt
λet exp[λ(et − 1)]︸ ︷︷ ︸

m′Y (t)

= λet exp[λ(et − 1)] + (λet)2 exp[λ(et − 1)].

Thus,

E(Y 2) =
d2

dt2
mY (t)

∣∣∣∣
t=0

= λe0 exp[λ(e0 − 1)] + (λe0)2 exp[λ(e0 − 1)] = λ+ λ2.

Finally,

V (Y ) = E(Y 2)− [E(Y )]2

= λ+ λ2 − λ2 = λ. �

Note: WMS show how to derive E(Y ) directly by writing

E(Y ) =
∞∑
y=0

y
λye−λ

y!

and then manipulating this sum. This is easy to do. Note that

E(Y ) =
∞∑
y=0

y
λye−λ

y!
=
∞∑
y=1

y
λye−λ

y!
= λ

∞∑
y=1

λy−1e−λ

(y − 1)!
.

Letting x = y − 1 in the last sum, we get

E(Y ) = λ
∞∑
x=0

λxe−λ

x!︸ ︷︷ ︸
= 1

= λ.
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Figure 3.11: Pmf of Y ∼ Poisson(λ = 1.5) in Example 3.19.

To derive V (Y ), we could calculate the second factorial moment E[Y (Y − 1)] and then use
the fact that

E[Y (Y − 1)] = E(Y 2 − Y ) = E(Y 2)− E(Y ) =⇒ E(Y 2) = E[Y (Y − 1)] + E(Y ).

However, in this case, it is just as easy to calculate E(Y 2) directly. Note that

E(Y 2) =
∞∑
y=0

y2λ
ye−λ

y!
=
∞∑
y=1

y2λ
ye−λ

y!
= λ

∞∑
y=1

y
λy−1e−λ

(y − 1)!

Letting x = y − 1 in the last sum, we get

E(Y 2) = λ

∞∑
x=0

(x+ 1)
λxe−λ

x!
= λE(X + 1),

where X ∼ Poisson(λ). Therefore, E(Y 2) = λ(λ + 1) = λ2 + λ, which is the same as what
we got by finding E(Y 2) using the mgf of Y .

Example 3.19. In a certain region in the northeast US, the number of severe weather
events per year Y is assumed to have a Poisson distribution with mean λ = 1.5. The pmf of
Y ∼ Poisson(λ = 1.5) is shown in Figure 3.11 above.
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Q: What is the probability there are four or more severe weather events in a given year?
A: We want to find P (Y ≥ 4). Work directly with the Poisson pmf; first note that

P (Y ≤ 3) = P (Y = 0) + P (Y = 1) + P (Y = 2) + P (Y = 3)

=
(1.5)0e−1.5

0!
+

(1.5)1e−1.5

1!
+

(1.5)2e−1.5

2!
+

(1.5)3e−1.5

3!
≈ 0.223 + 0.335 + 0.251 + 0.126 = 0.935.

By the complement rule,

P (Y ≥ 4) = 1− P (Y ≤ 3) ≈ 1− 0.935 = 0.065.

> 1-ppois(3,1.5)

[1] 0.06564245

Q: A company buys a policy to insure its revenue in the event of severe weather that shuts
down business. The policy pays nothing for the first such weather event of the year and
$10,000 for each one thereafter, until the end of the year. Calculate the expected amount
paid to the company under this policy during a one-year period.
A: First note that if Y = 0 or Y = 1, then the company receives nothing according to the
policy. It is only when there are 2 or more severe weather events does a payout occur, and
this payout is $10,000 for each event. Therefore, the payout when viewed as a function of Y
is given by

g(Y ) =

{
0, Y = 0, 1

10000(Y − 1), Y = 2, 3, 4, ...

and we want to calculate E[g(Y )]. From the definition of mathematical expectation, we have

E[g(Y )] =
∞∑
y=0

g(y)
(1.5)ye−1.5

y!

= 0× (1.5)0e−1.5

0!
+ 0× (1.5)1e−1.5

1!
+
∞∑
y=2

10000(y − 1)
(1.5)ye−1.5

y!

= 10000

[
∞∑
y=0

(y − 1)
(1.5)ye−1.5

y!
− (1− 1)× (1.5)1e−1.5

1!
− (0− 1)× (1.5)0e−1.5

0!

]
.

Note that
∞∑
y=0

(y − 1)
(1.5)ye−1.5

y!
= E(Y − 1) = E(Y )− 1 = 1.5− 1 = 0.5.

Therefore,
E[g(Y )] = 10000(0.5− 0 + e−1.5) ≈ 7231.30.

The expected payout to the company during a one-year period is $7,231.30. �
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4 Continuous Random Variables and their Probability

Distributions

4.1 Introduction

Recall: The last chapter dealt with discrete random variables. A discrete random variable
Y can assume a finite or (at most) a countable number of values. The probability mass
function (pmf) of a discrete random variable

pY (y) = P (Y = y)

specifies how to assign probability to each support point y ∈ R, a countable set.

Preview: Continuous random variables have supports R that are not countable. Instead,
the support of a continuous random variable Y is an interval like R = {y : 0 ≤ y ≤ 1},
R = {y : 0 < y < ∞}, R = {y : −∞ < y < ∞}, etc. Therefore, probabilities of events
involving continuous random variables must be assigned in a different way.

Note: Before we introduce continuous random variables and their distributions formally,
we start by introducing a new function that describes the probability distribution of any
random variable (discrete, continuous, or any combination thereof).

4.2 Cumulative distribution functions

Terminology: The cumulative distribution function (cdf) of a random variable Y is
the function

FY (y) = P (Y ≤ y), for all y ∈ R.
The cdf FY (y) is defined for all y ∈ R = (−∞,∞); not just for those values of y in the
support. Every random variable, discrete or continuous, has a cdf. Note also that FY (y) =
P (Y ≤ y) is a probability for any value of y. Therefore, the cdf of any random variable has
domain R and range [0, 1]; i.e., FY : R→ [0, 1].

Example 4.1. Suppose Y ∼ b(n = 3, p = 0.4); i.e., Y has a binomial distribution with
n = 3 trials and probability of success p = 0.4. Here are all the (nonzero) probabilities
provided by the pmf:

P (Y = 0) =

(
3

0

)
(0.4)0(0.6)3 = 0.216

P (Y = 1) =

(
3

1

)
(0.4)1(0.6)2 = 0.432

P (Y = 2) =

(
3

2

)
(0.4)2(0.6)1 = 0.288

P (Y = 3) =

(
3

3

)
(0.4)3(0.6)0 = 0.064.
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Figure 4.1: Pmf (left) and cdf (right) of Y ∼ b(n = 3, p = 0.4) in Example 4.1.

The pmf and cdf of Y are shown side by side in Figure 4.1 above. The cdf of Y is given by

FY (y) =


0, y < 0

0.216, 0 ≤ y < 1
0.648, 1 ≤ y < 2
0.936, 2 ≤ y < 3

1, y ≥ 3,

which is a step function. The probabilities in FY (y) are calculated as follows:

FY (0) = P (Y ≤ 0) = P (Y = 0) = 0.216

FY (1) = P (Y ≤ 1) = P (Y = 0) + P (Y = 1) = 0.216 + 0.432 = 0.648

FY (2) = P (Y ≤ 2) = P (Y = 0) + P (Y = 1) + P (Y = 2) = 0.216 + 0.432 + 0.288 = 0.936

FY (3) = P (Y ≤ 3) = P (Y = 0) + P (Y = 1) + P (Y = 2) + P (Y = 3)

= 0.216 + 0.432 + 0.288 + 0.064 = 1.

Note: The cdf FY (y) in this example takes a “step” at the support points y ∈ {0, 1, 2, 3}
and stays constant otherwise. The height of the step at a particular point y is equal to
pY (y) = P (Y = y), the probability associated with that point. �

Important: The cdf of a random variable is an important function−both theoretically and
practically.

• A random variable’s cdf completely determines its probability distribution. In other
words, if two different random variables have the same cdf, then the random variables
have the same probability distribution.

PAGE 74



STAT 511: CHAPTER 4 JOSHUA M. TEBBS

• Statistical software (like R) catalogues the cdfs of well-known distributions so prob-
abilities associated with these models can be calculated easily. For example, the R
code

> pbinom(2,3,0.4)

[1] 0.936

calculates FY (2) = P (Y ≤ 2) in Example 4.1.

Result: The function FY : R→ [0, 1] is a cdf if and only if these conditions hold:

1. limy→−∞ FY (y) = 0 and limy→∞ FY (y) = 1.

2. FY (y) is a nondecreasing function of y; i.e.,

y1 ≤ y2 =⇒ FY (y1) ≤ FY (y2),

for all y1, y2 ∈ R. Note: If FY (y) is differentiable, then you can show FY (y) is
nondecreasing by showing F ′Y (y) ≥ 0 for all y ∈ R.

3. FY (y) is right-continuous; i.e.,

lim
y→y+0

FY (y) = FY (y0),

for all y0 ∈ R.

4.3 Continuous random variables

Terminology: A random variable Y is said to be continuous if its cdf FY (y) is a continuous
function of y. Mathematically, this means

lim
y→y0

FY (y) = FY (y0),

for all y0 ∈ R.

Remark: This definition highlights the salient difference between discrete and continuous
random variables:

Y discrete ⇐⇒ FY (y) is a step function

Y continuous ⇐⇒ FY (y) is continuous.

Recall that the height of a discrete cdf’s “step” at any value y ∈ R gives the probability
P (Y = y). Because a continuous cdf has no discontinuous steps, this means that (strictly
positive) probabilities are not assigned to specific values of y in continuous distributions.
This can be proven rigorously and we do this now.
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Result: If Y is a continuous random variable with cdf FY (y), then

P (Y = y) = 0, for all y ∈ R.

Proof. Suppose ε > 0 so that {Y = y} ⊆ {y − ε < Y ≤ y}. By the monotonicity rule of
probability (pp 10, notes) and Axiom 3,

P (Y = y) ≤ P (y − ε < Y ≤ y) = P (Y ≤ y)− P (Y ≤ y − ε) = FY (y)− FY (y − ε).

Because probabilities are nonnegative (Axiom 1), we have

0 ≤ P (Y = y) ≤ lim
ε→0

P (y − ε < Y ≤ y)

= lim
ε→0

[FY (y)− FY (y − ε)]

= FY (y)− lim
ε→0

FY (y − ε)

= FY (y)− FY (y) = 0.

Note that limε→0 FY (y− ε) = FY (y) because FY (y) is continuous by assumption. Therefore,
we have shown

0 ≤ P (Y = y) ≤ 0

which implies P (Y = y) = 0. Because ε was arbitrary, we are done. �

Summary: Discrete random variables Y have positive probability assigned to support points
y ∈ R. Continuous random variables do not.

Example 4.2. The length of time until failure (in 100s of hours) for a transistor is a random
variable Y with cumulative distribution function

FY (y) =

{
0, y < 0

1− e−y2 , y ≥ 0.

Show that FY (y) is a valid cdf.

Proof. The end behavior requirements are met:

lim
y→−∞

FY (y) = lim
y→−∞

0 = 0

and
lim
y→∞

FY (y) = lim
y→∞

(1− e−y2) = 1− lim
y→∞

e−y
2

= 1− 0 = 1.

A graph of FY (y) is shown in Figure 4.2 (next page). Clearly, FY (y) is nondecreasing. We
can also show this mathematically by noting

F ′Y (y) =
d

dy
FY (y) =

d

dy
(1− e−y2) = 0− (−2y)e−y

2

= 2ye−y
2 ≥ 0,

for all y ≥ 0. Because F ′Y (y) ≥ 0, this means FY (y) is nondecreasing. Finally, FY (y) is a
continuous function (see Figure 4.2) so it is clearly right-continuous. �
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Figure 4.2: Cdf of Y in Example 4.2.

Terminology: Suppose Y is a continuous random variable with cdf FY (y). The probability
density function (pdf) for Y , denoted by fY (y), is given by

fY (y) =
d

dy
FY (y),

provided that (d/dy)FY (y) exists. If fY (y) is a continuous function, then

FY (y) =

∫ y

−∞
fY (t)dt.

This follows from the Fundamental Theorem of Calculus. These are important facts that
describe how the pdf and cdf of a continuous random variable are related.

Remark: Every continuous random variable that we will discuss in this course has a pdf. It
is common for students to think of a pdf fY (y) as the “continuous analogue” of a pmf pY (y)
in the discrete case. It is fine to do this; however, probabilities in continuous distributions are
not determined by calculating values of fY (y) for y ∈ R. Instead, probabilities are determined
by integration as we will see shortly. One can think of the pdf of a continuous random variable
Y as a theoretical model for a population of measurements. This conceptualization is
illustrated in the next example.
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Body mass index (BMI)
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Figure 4.3: Histogram of n = 328 BMI measurements for fourth-grade children in Augusta.
An estimate of the (population) pdf is shown as a smooth curve.

Example 4.3. In an observational study examining aspects related to childhood obesity,
Baxter and others (2012) measured the body mass index (BMI) of n = 328 fourth-grade
children sampled from a large public school district in Augusta, GA. A histogram of the
data is shown in Figure 4.3 (above) along with a smooth curve that “approximates” the data.
The smooth curve in this example is an estimate of what the pdf of Y is, where Y denotes
the BMI of a child in this population of fourth-grade children in Augusta. This curve serves
as a theoretical model for the entire population of children. �

Properties: The pdf of a continuous random variable Y has the following properties:

1. fY (y) ≥ 0, for all y ∈ R

2. The function fY (y) integrates to one; i.e.,∫
R
fY (y)dy = 1.

Compare these properties with those of a valid pmf pY (y) in discrete case; see pp 38 (notes).

PAGE 78



STAT 511: CHAPTER 4 JOSHUA M. TEBBS

Example 4.4. Suppose Y is a continuous random variable with pdf

fY (y) =

{
c(4y − 2y2), 0 < y < 2

0, otherwise.

(a) Find the value of c that makes fY (y) a valid pdf.
(b) Find the cdf of Y .

Solutions. (a) We can find c by using the fact
∫
R fY (y)dy = 1. Note that

1 =

∫
R
fY (y)dy =

∫ 2

0

c(4y − 2y2)dy

= c

(
2y2 − 2

3
y3

)∣∣∣∣∣
2

y=0

= c

(
8− 16

3

)
=

8

3
c.

Therefore, c = 3/8 and

fY (y) =


3

8
(4y − 2y2), 0 < y < 2

0, otherwise.

(b) The general expression for the cdf of Y is

FY (y) =

∫ y

−∞
fY (t)dt,

which we must calculate for all y ∈ R.

Case 1: When y ≤ 0,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ y

−∞
0dt = 0.

Case 2: When 0 < y < 2,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ 0

−∞
0dt+

∫ y

0

3

8
(4t− 2t2)dt

= 0 +
3

8

(
2t2 − 2

3
t3
)∣∣∣∣∣

y

t=0

=
3

8

(
2y2 − 2

3
y3

)
.

Case 3: When y ≥ 2,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ 0

−∞
0dt+

∫ 2

0

3

8
(4t− 2t2)dt︸ ︷︷ ︸

= 1

+

∫ y

2

0dt = 1.
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Figure 4.4: Pdf (left) and cdf (right) of Y in Example 4.4.

Summarizing, the cdf of Y is

FY (y) =


0, y ≤ 0

3

8

(
2y2 − 2

3
y3

)
, 0 < y < 2

1, y ≥ 2.

The pdf and cdf of Y are shown side by side in Figure 4.4 above. �

Result: Suppose Y is a continuous random variable with pdf fY (y). The probability of
the event {Y ∈ B} is found by integrating the pdf fY (y) over the set B; i.e.,

P (Y ∈ B) =

∫
B

fY (y)dy.

For example, in Example 4.4,

P (Y ≤ 0.5) =

∫ 0.5

0

fY (y)dy =

∫ 0.5

0

3

8
(4y − 2y2)dy

=
3

8

(
2y2 − 2

3
y3

)∣∣∣∣∣
0.5

0

=
3

8

[
2(0.5)2 − 2

3
(0.5)3

]
= FY (0.5) ≈ 0.156.

This calculation is depicted in Figure 4.5 (next page).
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Figure 4.5: Pdf (left) and cdf (right) of Y in Example 4.4. Left: The shaded area equals

P (Y ≤ 0.5) =
∫ 0.5

0
fY (y)dy ≈ 0.156. Right: P (Y ≤ 0.5) = FY (0.5) ≈ 0.156.

Result: If Y is a continuous random variable with cdf FY (y) and pdf fY (y), then for any
a < b,

P (a < Y < b) = P (a ≤ Y < b) = P (a < Y ≤ b) = P (a ≤ Y ≤ b)

and each one equals

FY (b)− FY (a) =

∫ b

a

fY (y)dy.

Discussion: Instead of offering a rigorous proof of this result, we use intuition.

• The four probabilities above are the same because P (Y = a) = 0 and P (Y = b) = 0;
recall that in continuous models, we assign zero probability to specific values. There-
fore, in continuous distributions, the endpoints in P (a ≤ Y ≤ b) do not influence the
probability. Of course, this is not true in discrete distributions; i.e., the endpoints
could be support points (which have positive probability).

• That FY (b) − FY (a) =
∫ b
a
fY (y)dy is essentially an application of the Fundamental

Theorem of Calculus.

Example 4.5. Suppose Y is a continuous random variable with cdf

FY (y) =
1

1 + e−y
, −∞ < y <∞.

(a) Find the pdf of Y .
(b) Calculate P (−2 < Y < 2) using the cdf and the pdf.
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Figure 4.6: Pdf (left) and cdf (right) of Y in Example 4.5. Left: The shaded area equals

P (−2 < Y < 2) =
∫ 2

−2
fY (y)dy ≈ 0.762. Right: P (−2 < Y < 2) = FY (2)− FY (−2) ≈ 0.762.

Solutions. (a) The pdf of Y is the derivative of FY (y); i.e.,

fY (y) =
d

dy
FY (y) =

d

dy

(
1

1 + e−y

)
= (−1)(1 + e−y)−2 × d

dy
(1 + e−y)︸ ︷︷ ︸

chain rule

=
e−y

(1 + e−y)2
.

Therefore, the pdf of Y is

fY (y) =


e−y

(1 + e−y)2
, −∞ < y <∞

0, otherwise.

(b) Using the cdf, we have

P (−2 < Y < 2) = FY (2)− FY (−2)

=
1

1 + e−2
− 1

1 + e2
≈ 0.881− 0.119 = 0.762.

Using the pdf, we have

P (−2 < Y < 2) =

∫ 2

−2

fY (y)dy =

∫ 2

−2

e−y

(1 + e−y)2
dy

To do this integral, let
u = 1 + e−y =⇒ du = −e−ydy.
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With this u-substitution, we have∫ 2

−2

e−y

(1 + e−y)2
dy =

∫ 1+e−2

1+e2
− 1

u2
du =

(
1

u

) ∣∣∣∣1+e−2

1+e2

=
1

1 + e−2
− 1

1 + e2
≈ 0.881− 0.119 = 0.762.

These calculations are depicted in Figure 4.6 (see previous page). �

Terminology: Suppose Y is a continuous random variable with cdf FY (y) and pdf fY (y).
The pth quantile (0 < p < 1) of Y , denoted by φp, is the smallest value that satisfies

P (Y ≤ φp) =

∫ φp

−∞
fY (y)dy = FY (φp) = p.

Note: If FY (y) is a strictly increasing function of y (which it often is), then the inverse
F−1
Y (y) exists and hence

FY (φp) = p ⇐⇒ φp = F−1
Y (p).

Some authors prefer to call φp the 100pth percentile of Y .

• For example, the p = 0.5 quantile (50th percentile) is called the median of Y .

Example 4.6. The amount of loss/damage (in millions of dollars) due to catastrophic
weather is modeled as a continuous random variable Y with cdf

FY (y) =


0, y < 0

1−
(

10

10 + y

)3

, y ≥ 0.

(a) Find φ0.5, the median of Y .
(b) Find the pdf of Y and identify where φ0.5 falls.

Solutions. (a) We can set FY (φ0.5) equal to p = 0.5 and solve for φ0.5. That is,

0.5
set
= FY (φ0.5) = 1−

(
10

10 + φ0.5

)3

=⇒
(

10

10 + φ0.5

)3

= 0.5

=⇒ 10

10 + φ0.5

= (0.5)1/3

=⇒ φ0.5 =
10

(0.5)1/3
− 10 ≈ 2.59921.

Therefore, the median loss is approximately $2.6 million.

(b) For y > 0, the pdf of Y is

fY (y) =
d

dy
FY (y) =

d

dy

[
1−

(
10

10 + y

)3
]

=
3000

(10 + y)4
.
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Figure 4.7: Pdf (left) and cdf (right) of Y in Example 4.6. Left: The shaded area equals
0.5. Right: A horizontal line at 0.5 has been added. In both figures, the median φ0.5 ≈ 2.6
is shown with a solid circle.

Therefore, the pdf of Y is

fY (y) =


3000

(10 + y)4
, y ≥ 0

0, otherwise.

The pdf and cdf of Y are shown side by side in Figure 4.7 above. �

Remark: It makes perfect sense to talk about “quantiles” with discrete random variables.
However, there are some potential problems with the definition that φp solves

FY (φp) = P (Y ≤ φp) = p.

The reason is there may be no values of φp that satisfy this equation, or there could be an
infinite number of values that solve it. For example, in Example 4.1 (see pp 73-74, notes),

• there is no value of φ0.5 that satisfies FY (φ0.5) = 0.5.

• there are an infinite number of values that solve FY (φ0.648) = 0.648; i.e., every number
in [1, 2).

We therefore have to alter the definition slightly to cover discrete distributions. The authors
define the pth quantile φp more generally as the smallest value satisfying

FY (φp) = P (Y ≤ φp) ≥ p.

When Y is continuous and FY (y) is strictly increasing, this more general definition reduces
to what we gave earlier.
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4.4 Mathematical expectation

Terminology: Suppose Y is a continuous random variable with pdf fY (y). The expected
value (or mean) of Y is

E(Y ) =

∫
R
yfY (y)dy.

We interpret E(Y ) in the same way as we did when Y was discrete (see pp 43, notes).

Technical note: For E(Y ) to exist, we need the integral above to converge absolutely; i.e.,∫
R
|y|fY (y)dy <∞.

Otherwise, we say that E(Y ) does not exist.

Terminology: Suppose Y is a continuous random variable with pdf fY (y). The expected
value of g(Y ) is

E[g(Y )] =

∫
R
g(y)fY (y)dy,

provided that this integral converges absolutely. Otherwise, we say that E[g(Y )] does not
exist.

Properties: The expectation operator E(·) enjoys the same properties as in the discrete
case (see pp 46-47, notes); i.e.,

1. E(c) = c, for any constant c ∈ R

2. E[cg(Y )] = cE[g(Y )]

3. For real functions g1, g2, ..., gk,

E

[
k∑
j=1

gj(Y )

]
=

k∑
j=1

E[gj(Y )].

Exercise: Prove each of these results in the continuous case.

Terminology: Suppose Y is a continuous random variable with mean E(Y ) = µ. The
variance of Y is

σ2 = V (Y ) = E[(Y − µ)2] =

∫
R
(y − µ)2fY (y)dy,

provided that this integral exists. The variance computing formula still applies, that is,

V (Y ) = E(Y 2)− [E(Y )]2.

The standard deviation of Y is the (positive) square root of the variance.
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Figure 4.8: Pdf of Y in Example 4.7. The mean E(Y ) = 2 is shown with a solid circle.

Example 4.7. The lifetime of an electrical component (in years) is modeled as a continuous
random variable Y with pdf

fY (y) =

{
ye−y, y ≥ 0

0, otherwise.

Find the mean and variance of Y .

Solutions. The mean of Y is

E(Y ) =

∫
R
yfY (y)dy =

∫ ∞
0

y × ye−ydy =

∫ ∞
0

y2e−ydy.

This integral can be computed using integration by parts. Let

u = y2 du = 2ydy

dv = e−y v = −e−y.

With these selections, ∫ ∞
0

y2e−ydy = −y2e−y
∣∣∣∞
0︸ ︷︷ ︸

= 0

+ 2

∫ ∞
0

ye−ydy︸ ︷︷ ︸
= 1

= 2.
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Therefore, the mean lifetime is E(Y ) = 2 years. To find V (Y ), we could use the definition
and calculate

V (Y ) = E[(Y − µ)2] =

∫
R
(y − µ)2fY (y)dy =

∫ ∞
0

(y − 2)2 × ye−ydy,

or we could use the variance computing formula

V (Y ) = E(Y 2)− [E(Y )]2.

The second moment

E(Y 2) =

∫
R
y2fY (y)dy =

∫ ∞
0

y2 × ye−ydy =

∫ ∞
0

y3e−ydy.

We use integration by parts again. Let

u = y3 du = 3y2dy

dv = e−y v = −e−y.

With these selections, ∫ ∞
0

y3e−ydy = −y3e−y
∣∣∣∞
0︸ ︷︷ ︸

= 0

+ 3

∫ ∞
0

y2e−ydy︸ ︷︷ ︸
=E(Y )=2

= 6.

Therefore,
V (Y ) = E(Y 2)− [E(Y )]2 = 6− 4 = 2. �

R: The integrate function in R can be helpful to calculate “messy” integrals or simply to
check your work. Here is the code to find the first and second moments in Example 4.7:

# Calculate E(Y)

integrand <- function(y){y^2*exp(-y)}

integrate(integrand,lower=0,upper=Inf)

2 with absolute error < 7.1e-05

# Calculate E(Y^2)

integrand.2 <- function(y){y^3*exp(-y)}

integrate(integrand.2,lower=0,upper=Inf)

6 with absolute error < 2.6e-06

The integrate function in R uses numerical methods to calculate integrals within a certain
level of “error.”

Exercise: Calculate E(Y ) and V (Y ) in Examples 4.4, 4.5, and 4.6. Do this “by hand” first
and then use R to check your work.
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Terminology: Suppose Y is a continuous random variable with pdf fY (y). The moment-
generating function (mgf) of Y is

mY (t) = E(etY ) =

∫
R
etyfY (y)dy,

provided this expectation is finite for all t in an open neighborhood about t = 0; i.e., ∃b > 0
such that E(etY ) < ∞ ∀t ∈ (−b, b). If no such b > 0 exists, then the moment generating
function of Y does not exist.

Recall: If Y is a random variable with mgf mY (t), then

E(Y k) = m
(k)
Y (0),

where

m
(k)
Y (0) =

dk

dtk
mY (t)

∣∣∣∣
t=0

.

Recall that this is also how we used the mgf to calculate moments like E(Y ) and E(Y 2) in
the discrete case.

Example 4.8. A continuous random variable Y is said to have an exponential distribu-
tion with parameter β > 0 if its pdf is given by

fY (y) =


1

β
e−y/β, y > 0

0, otherwise.

Find the mgf of Y .

Solution. The mgf of Y is

mY (t) = E(etY ) =

∫
R
etyfY (y)dy =

∫ ∞
0

ety
1

β
e−y/βdy =

1

β

∫ ∞
0

e−y(
1
β
−t)dy

=
1

β

[
− 1

1
β
− t

e−y(
1
β
−t)
∣∣∣∣∞
y=0

]

=
1

1− βt

[
e−y(

1
β
−t)
∣∣∣∣0
∞

]

=
1

1− βt

[
1− lim

y→∞
e−y(

1
β
−t)
]
.

Note that

lim
y→∞

e−y(
1
β
−t) = 0, if

1

β
− t > 0

lim
y→∞

e−y(
1
β
−t) = +∞, if

1

β
− t < 0.
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Figure 4.9: Exponential pdfs when β = 0.5, β = 1, and β = 2.

Therefore, provided that
1

β
− t > 0 ⇐⇒ t <

1

β
,

the mgf of Y exists and is given by

mY (t) =
1

1− βt
.

Note that ∃b > 0 (e.g., b = 1/β) such that mY (t) = E(etY ) <∞ ∀t ∈ (−b, b). �

Remark: The exponential distribution is widely used in engineering and actuarial science
applications when modeling “time to event” random variables; e.g., the time until part
failure, the time until a claim is made, etc. Figure 4.9 above shows the exponential pdf
when β = 0.5, β = 1, and β = 2. All exponential pdfs have the same shape but decay with
different scales.

Exercise: Use the mgf above to show that when Y has an exponential distribution with
parameter β > 0, the mean and variance are given by E(Y ) = β and V (Y ) = β2, respectively.
You can also show this by calculating E(Y ) and E(Y 2) directly (i.e., not using the mgf), so
do it both ways.
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4.5 Uniform distribution

Terminology: A random variable Y is said to have a uniform distribution from θ1 to θ2

if its pdf is given by

fY (y) =


1

θ2 − θ1

, θ1 < y < θ2

0, otherwise.

Shorthand notation is Y ∼ U(θ1, θ2). This is a valid pdf because fY (y) ≥ 0 for all y ∈ R and∫
R
fY (y)dy =

∫ θ2

θ1

(
1

θ2 − θ1

)
dy =

(
y

θ2 − θ1

)∣∣∣∣θ2
θ1

=
θ2 − θ1

θ2 − θ1

= 1.

CDF: The cdf of Y ∼ U(θ1, θ2) is given by

FY (y) =


0, y ≤ θ1

y − θ1

θ2 − θ1

, θ1 < y < θ2

1, y ≥ θ2.

The form of this cdf makes sense; note that the pdf fY (y) is a constant function of y. Its
cdf (which is calculated by anti-differentiation) is a linear function of y.

Example 4.9. We observe a dart player throwing darts at a board. Let Y denote the angle
of inclination from the horizontal axis drawn through the “bullseye.” In this example, we
might assume Y ∼ U(0, 2π). The pdf of Y is

fY (y) =


1

2π
, 0 < y < 2π

0, otherwise.

The cdf of Y is

FY (y) =


0, y ≤ 0
y

2π
, 0 < y < 2π

1, y ≥ 2π.

The pdf and cdf of Y are shown side by side in Figure 4.10 (see next page).

Q: What is the probability a throw lands in the first quadrant (formed by drawing horizontal
and vertical axes through the bullseye)?
A: A first-quadrant throw results if and only the event {0 < Y < π/2} occurs. Therefore,

P
(

0 < Y <
π

2

)
=

∫ π/2

0

1

2π
dy =

π/2

2π
=

1

4
.

Note that this answer also equals FY (π/2) = P (Y ≤ π/2). �
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Figure 4.10: Pdf (left) and cdf (right) of Y ∼ U(0, 2π) in Example 4.9.

Mean/Variance: If Y ∼ U(θ1, θ2), then

E(Y ) =
θ1 + θ2

2

V (Y ) =
(θ2 − θ1)2

12
.

MGF: The mgf of Y ∼ U(θ1, θ2) is

mY (t) =


eθ2t − eθ1t

t(θ2 − θ1)
, t 6= 0

1, t = 0.

Exercise: Verify these expressions above.

4.6 Normal distribution

Terminology: A random variable Y is said to have a normal distribution if its pdf is
given by

fY (y) =


1√
2πσ

e−
1
2( y−µσ )

2

, −∞ < y <∞

0, otherwise.

Shorthand notation is Y ∼ N (µ, σ2). There are two parameters in the normal distribution:
the mean µ and the variance σ2. The standard deviation σ is the (positive) square root of
the variance.
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Figure 4.11: N (µ = 0, σ2 = 1), N (µ = −2, σ2 = 4), and N (µ = 1, σ2 = 9) pdfs.

Fact: The N (µ, σ2) pdf fY (y) is symmetric about the mean µ; i.e.,

fY (µ− a) = fY (µ+ a),

for all a ∈ R.

Fact: The N (µ, σ2) pdf fY (y) has points of inflection at y = µ± σ.

Q: Is fY (y) a valid pdf?
A: Clearly, fY (y) ≥ 0 for all y ∈ R. However, showing

∫
R fY (y)dy = 1 is not trivial. The

reason why is that the antiderivative of fY (y) does not exist in closed form. Define

I =

∫ ∞
−∞

1√
2πσ

e−
1
2( y−µσ )

2

dy.

We want to show that I = 1. Let

z =
y − µ
σ

=⇒ dz =
1

σ
dy.

With this change of variable, the integral I above becomes

I =

∫ ∞
−∞

1√
2π
e−z

2/2dz.
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Because I > 0, it suffices to show that I2 = 1. Note that

I2 =

(∫ ∞
−∞

1√
2π
e−x

2/2dx

)(∫ ∞
−∞

1√
2π
e−y

2/2dy

)
=

1

2π

∫ ∞
−∞

∫ ∞
−∞

exp

[
−
(
x2 + y2

2

)]
dxdy.

Switch to polar coordinates. Let

x = r cos θ

y = r sin θ

so that
x2 + y2 = r2 cos2 θ + r2 sin2 θ = r2

and dxdy = rdrdθ; i.e., the Jacobian of the transformation from (x, y) space to (r, θ) space.
We have

I2 =
1

2π

∫ 2π

θ=0

∫ ∞
r=0

e−r
2/2 rdrdθ =

1

2π

∫ 2π

θ=0

(∫ ∞
r=0

re−r
2/2dr

)
dθ

=
1

2π

∫ 2π

θ=0

(
−e−r2/2

∣∣∣∣∞
r=0

)
dθ =

1

2π

∫ 2π

θ=0

dθ = 1.

Therefore, the N (µ, σ2) pdf fY (y) is valid. �

CDF: The cdf of Y ∼ N (µ, σ2) is given by

FY (y) = P (Y ≤ y) =

∫ y

−∞

1√
2πσ

e−
1
2( t−µσ )

2

dt,

for all y ∈ R. This integral does not exist in closed form so it is of limited practical utility.
The R function pnorm will calculate this probability upon request.

Mean/Variance: If Y ∼ N (µ, σ2), then

E(Y ) = µ

V (Y ) = σ2.

MGF: The mgf of Y ∼ N (µ, σ2) is

mY (t) = exp

(
µt+

σ2t2

2

)
.

Proof. Using the definition of the mgf, we have

mY (t) = E(etY ) =

∫ ∞
−∞

ety
1√
2πσ

e−
1
2( y−µσ )

2

dy =
1√
2πσ

∫ ∞
−∞

ety−
1
2( y−µσ )

2

dy.
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Define b = ty − 1
2

(
y−µ
σ

)2
, the exponent in the last integral. Note that

b = ty − 1

2

(
y − µ
σ

)2

= ty − 1

2σ2
(y2 − 2µy + µ2)

= − 1

2σ2
(y2 − 2µy − 2σ2ty + µ2)

= − 1

2σ2

[
y2 − 2(µ+ σ2t)y︸ ︷︷ ︸

complete the square

+µ2
]

= − 1

2σ2

[
y2 − 2(µ+ σ2t)y + (µ+ σ2t)2 − (µ+ σ2t)2︸ ︷︷ ︸

add and subtract

+µ2
]

= − 1

2σ2
{[y − (µ+ σ2t)]2}+

1

2σ2
[(µ+ σ2t)2 − µ2]

= − 1

2σ2
(y − a)2 +

1

2σ2
(µ2 + 2µσ2t+ σ4t2 − µ2)

= − 1

2σ2
(y − a)2 + µt+ σ2t2/2︸ ︷︷ ︸

= c, say

,

where a = µ+ σ2t. Note that c = µt+ σ2t2/2 is free of y. Therefore,

mY (t) =
1√
2πσ

∫ ∞
−∞

ebdy =
1√
2πσ

∫ ∞
−∞

e−
1

2σ2
(y−a)2+c dy

= ec
∫ ∞
−∞

1√
2πσ

e−
1

2σ2
(y−a)2︸ ︷︷ ︸

N (a,σ2) pdf

dy = ec,

because the N (a, σ2) pdf integrates to 1 over R = (−∞,∞). Finally, note that

ec = exp(c) = exp

(
µt+

σ2t2

2

)
. �

Exercise: Use the mgf mY (t) to show E(Y ) = µ and V (Y ) = σ2.

Terminology: A random variable Z is said to have a standard normal distribution if
its pdf is given by

fZ(z) =


1√
2π
e−z

2/2, −∞ < z <∞

0, otherwise.

A standard normal random variable Z arises when µ = 0 and σ2 = 1. Shorthand notation
is Z ∼ N (0, 1). An important result is that

Y ∼ N (µ, σ2) =⇒ Z =
Y − µ
σ
∼ N (0, 1).

In other words, any normal random variable Y can be “converted” into a standard normal
random variable by a result known as standardization.
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Proof. Let Z = (Y − µ)/σ. The cdf of Z is given by

FZ(z) = P (Z ≤ z) = P

(
Y − µ
σ
≤ z

)
= P (Y ≤ σz + µ) = FY (σz + µ).

Therefore, the pdf of Z is

fZ(z) =
d

dz
FZ(z) =

d

dz
FY (σz + µ) = fY (σz + µ)× d

dz
(σz + µ)

=
1√
2πσ

e−
1

2σ2
(σz+µ−µ)2 × σ =

1√
2π
e−z

2/2,

which is the pdf of N (0, 1) random variable. �

Implication: Because any normal random variable Y ∼ N (µ, σ2) can be transformed into
a standard normal random variable Z ∼ N (0, 1), we can always write

P (a < Y < b) = P

(
a− µ
σ

<
Y − µ
σ

<
b− µ
σ

)
= P

(
a− µ
σ

< Z <
b− µ
σ

)
= FZ

(
b− µ
σ

)
− FZ

(
a− µ
σ

)
,

where FZ(·) is the cdf of Z; i.e.,

FZ(z) =

∫ z

−∞

1√
2π
e−t

2/2dt.

This integral does not exist in closed form. However, probability tables exist that catalogue
its value for different values of z (which are determined using numerical integration methods).
For example, see Table 4 (pp 848, WMS), which catalogues values of 1 − FZ(z). Before
computing packages like R, these tables were needed. However, they are now somewhat
outdated; e.g., the R command pnorm(y,µ,σ) calculates the cdf of any N (µ, σ2) random
variable at the value y.

Example 4.10. The World Health Organization uses a normal distribution with mean
µ = 125 and standard deviation σ = 15 to describe the systolic blood pressure (SBP) of
American males (aged 18 and over). SBP is measured in millimeters of mercury (mmHg).
Let Y denote the SBP of an individual selected from this population.

(a) An SBP of 90 mmHg or less is generally considered to be “low.” Find P (Y < 90).
(b) Find φ0.8, the p = 0.8 quantile (80th percentile) of this distribution.

Solutions. (a) We have

P (Y < 90) =

∫ 90

−∞

1√
2π(15)

e−
1
2( y−125

15 )
2

︸ ︷︷ ︸
N (125,152) pdf

dy = FY (90),

where FY (·) denotes the N (125, 152) cdf. In R, this is calculated as
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Figure 4.12: N (125, 152) pdf in Example 4.10. Left: The probability P (Y < 90) ≈ 0.0098
is shown shaded. Right: The p = 0.8 quantile (80th percentile) φ0.8 ≈ 137.6 is shown with
a solid circle.

> pnorm(90,125,15)

[1] 0.009815329

Therefore, the probability a randomly selected individual from this population has low SBP
is about 0.01. Figure 4.12 (left) above shows this probability on the N (125, 152) pdf.

(b) The qnorm function in R calculates quantiles from any normal distribution. Here,

> qnorm(0.8,125,15)

[1] 137.6243

Therefore, 80 percent of this population has a SBP below 137.6 mmHg. Twenty percent of
the population has a SBP above this value; see Figure 4.12 (right) above. �

4.7 The gamma family of distributions

Note: There are three popular “named distributions” in the gamma family:

• the exponential distribution

• the gamma distribution

• the χ2 distribution.

We were introduced to the exponential distribution in Example 4.8 (pp 88, notes).
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4.7.1 Exponential distribution

Terminology: A random variable Y is said to have an exponential distribution with
parameter β > 0 if its pdf is given by

fY (y) =


1

β
e−y/β, y > 0

0, otherwise.

Shorthand notation is Y ∼ exponential(β). The value β determines the scale of the distri-
bution, so it is called a scale parameter. This is a valid pdf because fY (y) ≥ 0, for all
y ∈ R and∫

R
fY (y)dy =

∫ ∞
0

1

β
e−y/βdy =

1

β

(
−βe−y/β

∣∣∣∣∞
0

)
= e−0/β − lim

y→∞
e−y/β = 1− 0 = 1.

CDF: The cdf of Y ∼ exponential(β) is given by

FY (y) =

{
0, y ≤ 0

1− e−y/β, y > 0.

Exercise: Verify this expression. Note that the cdf of Y ∼ exponential(β) exists in closed
form.

Mean/Variance: If Y ∼ exponential(β), then

E(Y ) = β

V (Y ) = β2.

MGF: The mgf of Y ∼ exponential(β) is

mY (t) =
1

1− βt
, for t <

1

β
.

Example 4.11. “Time to event” studies are common in medical applications. One re-
cent study involved patients with venous ulcers (also known as leg ulcers). A short-stretch
bandage was applied to each patient’s infected leg area, and investigators recorded

Y = the time (in days) until the leg ulcer was completely healed.

Suppose Y has an exponential distribution with mean β = 190.

(a) Calculate P (Y > 100); i.e., the probability the ulcer takes longer than 100 days to heal.
(b) Find φ0.9, the p = 0.9 quantile (90th percentile) of the distribution of Y .
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Figure 4.13: Pdf and cdf of Y ∼ exponential(β = 190) in Example 4.11. Left: The proba-
bility P (Y > 100) ≈ 0.591 is shown shaded on the pdf. Right: The p = 0.9 quantile (90th
percentile) φ0.9 ≈ 437.5 is shown with a solid circle on the cdf. A horizontal line at 0.9 has
been added.

Solutions. (a) Using the pdf of Y , we have

P (Y > 100) =

∫ ∞
100

1

190
e−y/190dy =

1

190

(
−190e−y/190

∣∣∣∣∞
100

)
= = e−100/190 − lim

y→∞
e−y/190︸ ︷︷ ︸
= 0

≈ 0.591.

Figure 4.13 (left) above shows this probability on the exponential(β = 190) pdf. Note that
because the cdf FY (y) = P (Y ≤ y) = 1− e−y/β is in closed form, we could have computed

P (Y > 100) = 1− P (Y ≤ 100) = 1− FY (100)

= 1− (1− e−100/190) ≈ 0.591

directly.

(b) The p = 0.90 quantile φ0.9 solves FY (φ0.9) = P (Y ≤ φ0.9) = 0.9; see Figure 4.13 (right)
above. We have

1− e−φ0.9/190 set
= 0.9 =⇒ e−φ0.9/190 = 0.1 =⇒ − φ0.9

190
= ln(0.1)

Solving for φ0.9 gives
φ0.9 = −190 ln(0.1) ≈ 437.5 days.

Therefore, 90 percent of the patients’ healing times will be less than 437.5 days (10 percent
of the healing times will be greater than this). �
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Memoryless Property: Suppose Y ∼ exponential(β) and let r and s be positive constants.
Then

P (Y > r + s|Y > r) = P (Y > s).

That is, given that Y has exceeded r, the probability Y exceeds r + s (i.e., an additional
s units) is the same as if we were to look at Y unconditionally lasting until time s. The
exponential distribution is the only continuous distribution that has this property.

Exponential/Poisson connection: Suppose we observe occurrences according to a Pois-
son process with rate λ = 1/β and define

W = the time until the first occurrence.

The random variable W has an exponential distribution with mean β.
Proof. Clearly, W is a continuous random variable with nonnegative support. Thus, for
w > 0, the cdf of W is

FW (w) = P (W ≤ w) = 1− P (W > w)

= 1− P ({no occurrences in [0, w]})

= 1− e−λw(λw)0

0!
= 1− e−λw.

Substituting λ = 1/β, we have FW (w) = 1−e−w/β, the cdf of an exponential random variable
with mean β. Thus, the result follows. �

Example 4.12. Customers arrive at a checkout counter according to a Poisson process with
mean λ = 10 per hour. What is the probability it will take longer than 15 minutes for the
first customer to arrive? Note that 15 minutes = 0.25 hour.

Solution. Let W denote the time until the first arrival; we know W ∼ exponential(β = 1/10).
Therefore,

P (W > 0.25) = 1− P (W ≤ 0.25) = 1− FW (0.25) ←− (FW is the cdf of W )

= 1− (1− e−0.25/(1/10))

≈ 0.082. �

4.7.2 Gamma distribution

Terminology: A random variable Y is said to have a gamma distribution with parame-
ters α > 0 and β > 0 if its pdf is given by

fY (y) =


1

Γ(α)βα
yα−1e−y/β, y > 0

0, otherwise.

Shorthand notation is Y ∼ gamma(α, β).
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Note: The gamma distribution is indexed by two parameters:

α = shape parameter

β = scale parameter.

Gamma function: For α > 0, define the function

Γ(α) =

∫ ∞
0

uα−1e−udu.

The gamma function satisfies certain properties:

1. Γ(1) = 1

2. Γ(α + 1) = αΓ(α)

3. Γ(1/2) =
√
π.

Note that if α ∈ N = {1, 2, 3, ..., }, then second (recursive) property implies

Γ(α) = (α− 1)!

Important: When α = 1, the gamma(α, β) distribution reduces to the exponential(β)
distribution; note that

1

Γ(α)βα
yα−1e−y/β

α=1
=

1

Γ(1)β1
y1−1e−y/β =

1

β
e−y/β,

which is the exponential(β) pdf. Therefore, one can think of the gamma distribution as a
generalization of the exponential. By introducing an extra parameter, α, we can get the pdf
to assume more flexible shapes; see Figure 4.14 (next page).

Q: Is fY (y) a valid pdf?
A: Clearly, fY (y) ≥ 0 for all y ∈ R. To show that fY (y) integrates to 1, let

u =
y

β
=⇒ du =

1

β
dy.

We have∫
R
fY (y)dy =

∫ ∞
0

1

Γ(α)βα
yα−1e−y/βdy =

1

Γ(α)

∫ ∞
0

1

βα
(βu)α−1e−βu/β × βdu

=
1

Γ(α)

∫ ∞
0

uα−1e−udu

=
Γ(α)

Γ(α)
= 1.

Therefore, fY (y) is a valid pdf. �
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Figure 4.14: Gamma(α = 1.5, β = 1.6), gamma(α = 2, β = 2), and gamma(α = 2.5, β = 3)
pdfs.

Important: Upon closer inspection, we see the nonzero part of the gamma(α, β) pdf

fY (y) =
1

Γ(α)βα
yα−1e−y/β

consists of two parts:

• the kernel of the pdf: yα−1e−y/β

• the constant out front: 1/Γ(α)βα.

The kernel is the “guts” of the formula, while the constant out front is simply the “right
quantity” that makes fY (y) a valid pdf; i.e., the constant that makes fY (y) integrate to 1.
As such, ∫ ∞

0

1

Γ(α)βα
yα−1e−y/βdy = 1 =⇒

∫ ∞
0

yα−1e−y/βdy = Γ(α)βα.

This result is extremely useful and will be used repeatedly. For example,∫ ∞
0

y4e−y/3dy =

∫ ∞
0

y5−1e−y/3dy = Γ(5)35 = 4!× 243 = 5832.
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Mean/Variance: If Y ∼ gamma(α, β), then

E(Y ) = αβ

V (Y ) = αβ2.

MGF: The mgf of Y ∼ gamma(α, β) is

mY (t) =

(
1

1− βt

)α
, for t <

1

β
.

Note that these formulas reduce to those for the exponential distribution when α = 1; see
pp 97 (notes). To see why the mgf formula is correct, note that

mY (t) = E(etY ) =

∫
R
etyfY (y)dy =

∫ ∞
0

ety × 1

Γ(α)βα
yα−1e−y/βdy.

In the integrand, write

etye−y/β = ety−y/β = e−y[(1/β)−t] = e−y/[(1/β)−t]−1

= e−y/γ,

where
γ = [(1/β)− t]−1.

Therefore, mY (t) can be written as

γα

γα

∫ ∞
0

1

Γ(α)βα
yα−1e−y/γdy =

γα

βα

∫ ∞
0

1

Γ(α)γα
yα−1e−y/γdy︸ ︷︷ ︸

= 1 (see note below)

=
1

βα

(
1

1
β
− t

)α

=
1

βα

(
β

1− βt

)α
=

(
1

1− βt

)α
.

Note: The integral above is equal to 1 because the integrand is the gamma(α, γ) pdf and
the integral is over (0,∞). However, for this to be true, γ cannot be negative or else the
integral diverges. We must require

γ = [(1/β)− t]−1 > 0 ⇐⇒ t <
1

β
.

Note that ∃b > 0 (e.g., b = 1/β) such that mY (t) = E(etY ) <∞ ∀t ∈ (−b, b). �

Exercise: Verify the formulas for E(Y ) and V (Y ) above. You can do this by using the mgf
or by using the definition of mathematical expectation directly.

Example 4.13. The time to death (Y , measured in days) for patients with a serious type
of advanced tongue cancer follows a gamma distribution with α = 2.7 and β = 100. What is
the probability a patient with this type of cancer will live longer than one year? Note that
1 year is 365 days.
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Figure 4.15: Pdf of Y ∼ gamma(α = 2.7, β = 100) in Example 4.13. The probability
P (Y > 365) ≈ 0.236 is shown shaded.

Solution. We want to compute P (Y > 365), where Y ∼ gamma(α = 2.7, β = 100); i.e.,

P (Y > 365) =

∫ ∞
365

1

Γ(2.7)1002.7
y2.7−1e−y/100dy.

This integral must be calculated numerically because the gamma(α, β) cdf does not exist in
closed form (unless α = 1). Note that

P (Y > 365) = 1− P (Y ≤ 365) = 1− FY (365),

where FY (·) is the gamma(α = 2.7, β = 100) cdf. The R function pgamma calculates the
gamma cdf.

> 1-pgamma(365,2.7,1/100)

[1] 0.2355346

The pdf of Y ∼ gamma(α = 2.7, β = 100) is shown in Figure 4.15 above. �
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Gamma/Poisson connection: Suppose we observe occurrences according to a Poisson
process with rate λ = 1/β and define

W = the time until the αth occurrence.

The random variable W ∼ gamma(α, β).
Proof. Clearly, W is a continuous random variable with nonnegative support. Thus, for
w > 0, the cdf of W is

FW (w) = P (W ≤ w) = 1− P (W > w)

= 1− P ({fewer than α occurrences in [0, w]})

= 1−
α−1∑
j=0

(λw)je−λw

j!
.

The pdf of W , for w > 0, is given by

fW (w) =
d

dw
FW (w) = λe−λw − e−λw

α−1∑
j=1

[
j(λw)j−1λ

j!
− (λw)jλ

j!

]
︸ ︷︷ ︸

telescoping sum

= λe−λw − e−λw
[
λ− λ(λw)α−1

(α− 1)!

]
=

λα

Γ(α)
wα−1e−λw,

which is the pdf of W ∼ gamma(α, β), where β = 1/λ. �

Remark: In Example 4.12 (pp 99, notes), the time until the first customer arrives (α = 1)
follows an exponential distribution with mean β = 1/10.

• The time until the second customer arrives follows a gamma(α = 2, β = 1/10) distri-
bution.

• The time until the third customer arrives follows a gamma(α = 3, β = 1/10) distribu-
tion, and so on.

4.7.3 χ2 distribution

Terminology: A random variable Y is said to have a χ2 distribution with ν > 0 degrees
of freedom if its pdf is given by

fY (y) =


1

Γ(ν
2
)2ν/2

y(ν/2)−1e−y/2, y > 0

0, otherwise.
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Shorthand notation is Y ∼ χ2(ν). In practice, ν > 0 is usually an integer but it doesn’t have
to be. Note that a χ2(ν) distribution is a gamma(α, β) distribution where

α =
ν

2
and β = 2.

Mean/Variance: If Y ∼ χ2(ν), then

E(Y ) = ν

V (Y ) = 2ν.

MGF: The mgf of Y ∼ χ2(ν) is

mY (t) =

(
1

1− 2t

)ν/2
, for t <

1

2
.

Note: The χ2(ν) cdf does not exist in closed form; probabilities and quantiles associated
with the χ2(ν) distribution can be calculated in R using the pchisq and qchisq functions,
respectively.

4.8 Beta distribution

Terminology: A random variable Y is said to have a beta distribution with parameters
α > 0 and β > 0 if its pdf is given by

fY (y) =


Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1, 0 < y < 1

0, otherwise.

Shorthand notation is Y ∼ beta(α, β). Note that the support of a beta random variable Y
is R = {y : 0 < y < 1}.

Remark: The nonzero part of the beta pdf is sometimes written as

Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1 =

1

B(α, β)
yα−1(1− y)β−1,

where the constant

B(α, β) =

∫ 1

0

yα−1(1− y)β−1dy =
Γ(α)Γ(β)

Γ(α + β)
.

In analysis, B(α, β) is called the beta function. Therefore, the nonzero part of the
beta(α, β) pdf consists of two parts:

• the kernel of the pdf: yα−1(1− y)β−1

• the constant out front: 1/B(α, β).

The kernel is the “guts” of the formula, while the constant out front is simply the “right
quantity” that makes fY (y) a valid pdf; i.e., the constant that makes fY (y) integrate to 1.
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Figure 4.16: Beta(α = 3, β = 3), beta(α = 2, β = 6.5), and beta(α = 4, β = 1) pdfs.

Remark: The pdf of Y ∼ beta(α, β) is very flexible; i.e., the pdf fY (y) can assume many
shapes over R = {y : 0 < y < 1}; see Figure 4.16 above. For example,

1. α = β =⇒ fY (y) is symmetric about y = 1/2

• α = β = 1 =⇒ Y ∼ U(0, 1)

2. α > β =⇒ fY (y) is skewed left

3. α < β =⇒ fY (y) is skewed right.

CDF/MGF: The cdf of Y ∼ beta(α, β), for 0 < y < 1, can be written as

FY (y) = P (Y ≤ y) =

∫ y

0

Γ(α + β)

Γ(α)Γ(β)
tα−1(1− t)β−1dt,

which is called the incomplete beta function. However, this can not be simplified further
in general (it can for certain values of α and/or β). Probabilities and quantiles associated
with the beta(α, β) distribution can be calculated in R using the pbeta and qbeta functions,
respectively. The mgf of Y ∼ beta(α, β) exists, but its form is not very friendly.
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Mean/Variance: If Y ∼ beta(α, β), then

E(Y ) =
α

α + β

V (Y ) =
αβ

(α + β)2(α + β + 1)
.

Proof. We will derive E(Y ) only. From the definition of expected value, we have

E(Y ) =

∫
R
yfY (y)dy =

∫ 1

0

y × Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1dy

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

y(α+1)−1(1− y)β−1︸ ︷︷ ︸
beta(α+1,β) kernel

dy.

The last integrand is a beta kernel with parameters α+ 1 and β. Because integration is over
R = {y : 0 < y < 1}, the integral∫ 1

0

y(α+1)−1(1− y)β−1 =
Γ(α + 1)Γ(β)

Γ(α + 1 + β)
.

Therefore,

E(Y ) =
Γ(α + β)

Γ(α)Γ(β)

Γ(α + 1)Γ(β)

Γ(α + 1 + β)
=

Γ(α + β)

Γ(α)

Γ(α + 1)

Γ(α + 1 + β)

=
Γ(α + β)

Γ(α)

αΓ(α)

(α + β)Γ(α + β)
=

α

α + β
.

To derive V (Y ), first find E(Y 2) by using similar calculations. Then use the variance com-
puting formula V (Y ) = E(Y 2)− [E(Y )]2 and simplify. �

Example 4.14. A filling station is supplied with gasoline once per day. Its daily volume in
sales (Y , measured in 100,000s of gallons) is a random variable with pdf

fY (y) =

{
5(1− y)4, 0 < y < 1

0, otherwise.

(a) Find E(Y ), the mean daily volume in sales.
(b) What must the filling station’s capacity be in order to have the probability of the supply
being exhausted in a given day be 0.01?

Solutions. This is a beta(1, 5) pdf. To see why note that the constant

Γ(1 + 5)

Γ(1)Γ(5)
=

Γ(6)

Γ(5)
=

5Γ(5)

Γ(5)
= 5.

The kernel
(1− y)4 = yα−1(1− y)β−1,

where α = 1 and β = 5. Therefore, Y ∼ beta(1, 5). The pdf of Y is shown in Figure 4.17
(see next page).
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Figure 4.17: Pdf of Y ∼ beta(α = 1, β = 5) in Example 4.14. The right tail probability is
0.01.

(a) The mean of Y ∼ beta(α = 1, β = 5) is

E(Y ) =
1

1 + 5
=

1

6
.

Therefore, the mean daily volume in sales is 16,666.67 gallons.

(b) We want to find φ0.99, the p = 0.99 quantile (99th percentile) of Y . This quantile solves

0.99
set
=

∫ φ0.99

0

5(1− y)4dy.

To do this integral, let u = 1− y =⇒ du = −dy so that

0.99
set
=

∫ 1−φ0.99

1

−5u4 du =

∫ 1

1−φ0.99
5u4 du = u5

∣∣∣1
1−φ0.99

= 1− (1− φ0.99)5.

Solving for φ0.99 gives
φ0.99 = 1− (0.01)1/5 ≈ 0.60189.

Therefore, the capacity would have to be set at 60,189 gallons. �
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4.9 Tchebysheff’s Inequality

Remark: When we calculate probabilities associated with a random variable Y , we usually
do so under the assumption that Y follows a certain distribution, say Y ∼ Poisson(λ = 1.5)
or Y ∼ N (µ = 125, σ2 = 152). However, in some situations, we may not know what the
distribution of Y is, or we may be unwilling to elicit Y ’s distribution for fear of making a
bad choice. In these instances, we cannot calculate probabilities exactly, but we may be able
to place bounds on how large or small these probabilities are.

Markov’s Inequality: Suppose Y is a random variable with

• P (Y ≥ 0) = 1; i.e., Y has positive support

• P (Y = 0) < 1; i.e., Y is not degenerate at y = 0.

For any r > 0,

P (Y ≥ r) ≤ E(Y )

r
.

Proof. Suppose Y is continuous with pdf fY (y). The expected value of Y is

E(Y ) =

∫ ∞
0

yfY (y)dy ≥
∫ ∞
r

yfY (y)dy

≥
∫ ∞
r

rfY (y)dy = r

∫ ∞
r

fY (y)dy = rP (Y ≥ r).

If Y is discrete with pmf pY (y), the proof is analogous; simply replace fY (y) with pY (y) and
replace integrals with sums. �

Note: The probability P (Y ≥ r) is a right-tail probability. Often r is a value out in the
right tail of the pmf/pdf of Y . Markov’s Inequality places an upper bound on how large this
probability can be, and this upper bound holds regardless of what the distribution of Y is
(as long as the two conditions above are satisfied).

Illustration: In Example 4.13 (pp 102-103, notes), we assumed the time to death Y ∼
gamma(α = 2.7, β = 100) and calculated

P (Y > 365) =

∫ ∞
365

1

Γ(2.7)1002.7
y2.7−1e−y/100dy ≈ 0.236.

If the gamma(α = 2.7, β = 100) distribution is the correct model for Y , then this is the
correct answer for P (Y > 365). On the other hand, the Markov upper bound on this
probability, which assumes only that E(Y ) = 270, is given by

P (Y > 365) ≤ 270

365
≈ 0.740.

This example illustrates how conservative the Markov upper bound can be.
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Tchebysheff’s Inequality: Suppose Y is a random variable with mean E(Y ) = µ and
variance V (Y ) = σ2 > 0. For any k > 0,

P (|Y − µ| ≥ kσ) ≤ 1

k2
.

Proof. Rewrite the event

{|Y − µ| ≥ kσ} = {(Y − µ)2 ≥ k2σ2}.

This is justified because |Y − µ|, k, and σ are all nonnegative. Therefore, we can write

P (|Y − µ| ≥ kσ) = P ((Y − µ)2 ≥ k2σ2).

Note that (Y − µ)2 is a nonnegative random variable and is not degenerate at 0 (because
σ2 > 0). Therefore, we can apply Markov’s Inequality to the RHS with r = k2σ2 to get

P ((Y − µ)2 ≥ k2σ2) ≤ E[(Y − µ)2]

k2σ2
=

σ2

k2σ2
=

1

k2
. �

Note: Tchebysheff’s Inequality can be written equivalently as

P (|Y − µ| < kσ) ≥ 1− 1

k2
.

This is true because the event {|Y −µ| < kσ} is the complement of {|Y −µ| ≥ kσ}. Writing
Tchebysheff’s Inequality in this way is helpful. Note that

|Y − µ| < kσ ⇐⇒ − kσ < Y − µ < kσ ⇐⇒ µ− kσ < Y < µ+ kσ.

Therefore,

P (µ− kσ < Y < µ+ kσ) ≥ 1− 1

k2
.

A statistical interpretation of P (µ− kσ < Y < µ + kσ) is “the proportion of individuals in
the population within k standard deviations of the mean µ.”

Illustration: Let’s calculate P (µ− kσ < Y < µ+ kσ) when Y ∼ N (µ, σ2) and compare it
to the lower bound conferred by Tchebysheff’s Inequality.

k Probability Normal Tchebysheff’s lower bound
1 P (µ− σ < Y < µ+ σ) 0.6827 0
2 P (µ− 2σ < Y < µ+ 2σ) 0.9545 3/4 = 0.75
3 P (µ− 3σ < Y < µ+ 3σ) 0.9973 8/9 ≈ 0.89
4 P (µ− 4σ < Y < µ+ 4σ) 0.9999 15/16 ≈ 0.94

This illustrates how conservative the Tchebysheff bound can be. The lower bound conferred
by Tchebysheff’s Inequality must hold for every possible distribution (with the same mean
and variance), so it is not surprising that lower (or upper) bounds are conservative.
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5 Multivariate Probability Distributions

5.1 Introduction

Remark: In Chapters 3 and 4, we were interested in univariate random variables (of the
discrete and continuous type, respectively). However, in many problems, there are two or
more random variables of interest and the goal is to understand the probabilistic behavior
of them together. For example,

• Researchers would like to use a student’s pretest score Y1 and his/her posttest score
Y2 to assess the effectiveness of an educational program.

• For a pool of high-risk drivers, actuaries want to describe the amount of financial loss
due to collisions Y1 and liability Y2.

• In a clinical trial, physicians want to characterize the concentration of a drug in a
patient’s body Y as a function of the patient’s body weight X.

• An electrical system consists of four components whose times to failure are denoted by
Y1, Y2, Y3, and Y4. Engineers would like to describe the reliability of the system.

In each example, it is natural to posit a relationship between or among the random variables
involved. This relationship can be described mathematically using a joint probability
distribution. This distribution, in turn, allows us to make probability statements involving
the random variables−just as univariate distributions allow us to do this with a single random
variable.

5.2 Joint distributions for two random variables

5.2.1 The discrete case

Terminology: Suppose Y1 and Y2 are discrete random variables. We call Y = (Y1, Y2) a
discrete random vector. The joint probability mass function (pmf) of Y1 and Y2 is

pY1,Y2(y1, y2) = P (Y1 = y1, Y2 = y2),

which is nonzero for all (y1, y2) ∈ R. The set R ⊂ R2 is the two-dimensional support of
Y = (Y1, Y2). The joint pmf pY1,Y2(y1, y2) has the following properties:

1. 0 ≤ pY1,Y2(y1, y2) ≤ 1, for all y1 and y2

2. the sum of the probabilities over all y1 and y2 equals 1; i.e.,∑∑
(y1,y2)∈R

pY1,Y2(y1, y2) = 1.

Compare these properties with those of a valid pmf pY (y) in the univariate discrete case; see
pp 38 (notes).
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Example 5.1. An actuary is interested in the number of tornadoes recorded in two Iowa
counties on a per-year basis. Define

Y1 = the number of tornados recorded each year in Lee County

Y2 = the number of tornados recorded each year in Van Buren County.

The joint pmf of Y1 and Y2 is given in the table below:

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2
y1 = 0 0.64 0.08 0.04
y1 = 1 0.12 0.06 0.02
y1 = 2 0.02 0.01 0.01

In this example, the support of Y = (Y1, Y2) is

R = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)}.

The probabilities pY1,Y2(y1, y2) = P (Y1 = y1, Y2 = y2) associated with each support point are
the entries in the table.

(a) What is the probability there is no more than one tornado recorded in the two counties
combined in a given year?
(b) What is the probability there are two tornadoes recorded in Lee County in a given year?

Solutions. In part (a), we want P (Y1 + Y2 ≤ 1). The support points which correspond to
the event {Y1 + Y2 ≤ 1} are (0, 0), (1, 0) and (0, 1). Thus,

P (Y1 + Y2 ≤ 1) = pY1,Y2(0, 0) + pY1,Y2(1, 0) + pY1,Y2(0, 1)

= 0.64 + 0.12 + 0.08 = 0.84.

In part (b), we want P (Y1 = 2). The support points which correspond to the event {Y1 = 2}
are (2, 0), (2, 1), and (2, 2). Thus,

P (Y1 = 2) = pY1,Y2(2, 0) + pY1,Y2(2, 1) + pY1,Y2(2, 2)

= 0.02 + 0.01 + 0.01 = 0.04. �

This example illustrates the following general result.

Result: Suppose Y = (Y1, Y2) is a discrete random vector with joint pmf pY1,Y2(y1, y2). The
probability of the event {(Y1, Y2) ∈ B} is found by adding the probabilities pY1,Y2(y1, y2) for
all (y1, y2) ∈ B; i.e.,

P ((Y1, Y2) ∈ B) =
∑∑
(y1,y2)∈B

pY1,Y2(y1, y2).

This is analogous to how probabilities were calculated in discrete distributions for univariate
random variables; see pp 39 (notes).
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5.2.2 The continuous case

Terminology: Suppose Y1 and Y2 are continuous random variables. We call Y = (Y1, Y2) a
continuous random vector. The joint probability density function (pdf) of Y1 and
Y2 is denoted by

fY1,Y2(y1, y2).

The joint pdf fY1,Y2(y1, y2) is a three-dimensional function which is strictly larger than zero
over R ⊂ R2, the two-dimensional support of Y = (Y1, Y2). The joint pdf fY1,Y2(y1, y2) has
the following properties:

1. fY1,Y2(y1, y2) ≥ 0, for all (y1, y2) ∈ R2

2. The function fY1,Y2(y1, y2) integrates to one; i.e.,∫ ∫
R2

fY1,Y2(y1, y2)dy1dy2 = 1.

Compare these properties with those of a valid pdf fY (y) in the univariate continuous case;
see pp 78 (notes).

Result: Suppose Y = (Y1, Y2) is a continuous random vector with joint pdf fY1,Y2(y1, y2).
The probability of the event {(Y1, Y2) ∈ B} is found by integrating fY1,Y2(y1, y2) over the set
B; i.e.,

P ((Y1, Y2) ∈ B) =

∫ ∫
(y1,y2)∈B

fY1,Y2(y1, y2)dy1dy2.

In other words, P ((Y1, Y2) ∈ B) is the volume under the joint pdf fY1,Y2(y1, y2) over the
two-dimensional set B.

Example 5.2. Suppose Y = (Y1, Y2) is a continuous random vector with joint pdf

fY1,Y2(y1, y2) =

{
cy1y2, 0 < y2 < y1 < 1

0, otherwise.

(a) Find the value of c that makes fY1,Y2(y1, y2) a valid pdf.
(b) Calculate P (Y1 − Y2 >

1
8
).

Solutions. Whenever we have a problem like this, the first thing we do is make a detailed
picture of what the two-dimensional support looks like; here,

R = {(y1, y2) : 0 < y2 < y1 < 1}.

This triangular region is shown in Figure 5.1 (see next page). The joint pdf fY1,Y2(y1, y2) is
a three-dimensional function which takes the value cy1y2 over this region (and equals zero,
otherwise).
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Figure 5.1: The support R = {(y1, y2) : 0 < y2 < y1 < 1} in Example 5.2.

(a) To find the value of c, we use the fact that∫ ∫
R2

fY1,Y2(y1, y2)dy1dy2 = 1 =⇒
∫ 1

y2=0

∫ 1

y1=y2

cy1y2 dy1dy2
set
= 1.

We could also set up the double integral by integrating in the reverse order; i.e.,∫ 1

y1=0

∫ y1

y2=0

cy1y2 dy2dy1
set
= 1.

We can solve either integral equation for c. Let’s solve the second integral:∫ 1

y1=0

∫ y1

y2=0

cy1y2 dy2dy1 = c

∫ 1

y1=0

y1

(
y2

2

2

∣∣∣∣y1
y2=0

)
dy1 = c

∫ 1

y1=0

y3
1

2
dy1 =

c

2

(
y4

1

4

∣∣∣∣1
y1=0

)
=
c

8
set
= 1.

Therefore, c = 8 and the joint pdf is

fY1,Y2(y1, y2) =

{
8y1y2, 0 < y2 < y1 < 1

0, otherwise.
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Figure 5.2: The set B = {(y1, y2) : 0 < y2 < y1 < 1, y1 − y2 >
1
8
} in Example 5.2.

(b) To find P (Y1 − Y2 >
1
8
), we integrate fY1,Y2(y1, y2) over the set

B =

{
(y1, y2) : 0 < y2 < y1 < 1, y1 − y2 >

1

8

}
,

shown in Figure 5.2 (see above). The boundary of B is determined as follows:

y1 − y2 =
1

8
=⇒ y2 = y1 −

1

8
.

Therefore,

P

(
Y1 − Y2 >

1

8

)
=

∫ 7
8

y2=0

∫ 1

y1=y2+ 1
8

8y1y2 dy1dy2 ≈ 0.698.

I calculated this double integral in R using the integral2 function in the pracma package:

> library(pracma)

> joint.pdf <- function(y1,y2) 8*y1*y2

> y1min <- function(y2) y2+1/8

> integral2(joint.pdf,0,7/8,y1min,1)

PAGE 115



STAT 511: CHAPTER 5 JOSHUA M. TEBBS

$Q

[1] 0.6978353

$error

[1] 2.775558e-17

We could also calculate this by integrating in the reverse order (see Figure 5.2); i.e.,

P

(
Y1 − Y2 >

1

8

)
=

∫ 1

y1= 1
8

∫ y1− 1
8

y2=0

8y1y2 dy2dy1 ≈ 0.698.

> library(pracma)

> joint.pdf <- function(y1,y2) 8*y1*y2

> y2max <- function(y1) y1-1/8

> integral2(joint.pdf,1/8,1,0,y2max)

$Q

[1] 0.6978353

$error

[1] 1.752071e-16

Remark: When working with joint distributions for continuous random variables, construct-
ing good pictures of the support and regions of integration is very helpful. Double integral
limits are determined from good pictures. Students who do not take the time to construct
good pictures usually get the wrong answer. �

5.3 Marginal distributions

5.3.1 The discrete case

Recall: In Example 5.1 (notes), we examined the joint distribution of

Y1 = the number of tornados recorded each year in Lee County

Y2 = the number of tornados recorded each year in Van Buren County.

The joint pmf of Y1 and Y2 was described in the following table:

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2
y1 = 0 0.64 0.08 0.04
y1 = 1 0.12 0.06 0.02
y1 = 2 0.02 0.01 0.01

A joint pmf describes how two random variables are distributed jointly. We now discuss
marginal distributions, which describe how random variables are distributed separately.
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Terminology: Suppose Y1 and Y2 are discrete random variables with joint pmf pY1,Y2(y1, y2).
The marginal pmf of Y1 is

pY1(y1) =
∑
all y2

pY1,Y2(y1, y2).

Similarly, the marginal pmf of Y2 is

pY2(y2) =
∑
all y1

pY1,Y2(y1, y2).

In other words, to find the marginal pmf of one random variable, you take the joint pmf and
sum over the possible values of the other random variable.

The table below shows how the marginal distributions are calculated in Example 5.1:

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 pY1(y1)
y1 = 0 0.64 0.08 0.04 0.76
y1 = 1 0.12 0.06 0.02 0.20
y1 = 2 0.02 0.01 0.01 0.04
pY2(y2) 0.78 0.15 0.07

That is, the marginal pmf of Y1 is

y1 0 1 2
pY1(y1) 0.76 0.20 0.04

and the marginal pmf of Y2 is

y2 0 1 2
pY2(y2) 0.78 0.15 0.07

Note: Marginal pmfs are univariate pmfs−just like those we saw in Chapter 3. The marginal
pmf of Y1 describes how Y1 varies on its own and similarly for the marginal pmf of Y2.

5.3.2 The continuous case

Terminology: Suppose Y1 and Y2 are continuous random variables with joint pdf fY1,Y2(y1, y2).
The marginal pdf of Y1 is

fY1(y1) =

∫
R
fY1,Y2(y1, y2) dy2.

Similarly, the marginal pdf of Y2 is

fY2(y2) =

∫
R
fY1,Y2(y1, y2) dy1.

In other words, to find the marginal pdf of one random variable, you take the joint pdf and
integrate it over the other variable.
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Figure 5.3: The support R = {(y1, y2) : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 2} in Example 5.3.

Example 5.3. An insurance company insures a large number of drivers. Let Y1 denote
the company’s losses under collision insurance and let Y2 denote the company’s losses under
liability insurance. The joint pdf of Y1 and Y2 is given by

fY1,Y2(y1, y2) =


2y1 + 2− y2

4
, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 2

0, otherwise.

Note that the support R = {(y1, y2) : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 2} is a rectangular set, shown in
Figure 5.3 (above). The joint pdf fY1,Y2(y1, y2) is a three-dimensional function which takes
the value (2y1 + 2− y2)/4 over this region (and equals zero, otherwise).

Let’s find both marginal pdfs. The marginal pdf of Y1 is nonzero when 0 ≤ y1 ≤ 1. For
these values, the pdf is found as follows:

fY1(y1) =

∫
R
fY1,Y2(y1, y2) dy2 =

∫ 2

y2=0

(
2y1 + 2− y2

4

)
dy2

=
1

4

[(
2y1y2 + 2y2 −

y2
2

2

)∣∣∣∣2
y2=0

]
=

1

4
(4y1 + 4− 2) = y1 +

1

2
.
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Figure 5.4: Marginal pdfs fY1(y1) and fY2(y2) in Example 5.3. Note that both the horizontal
and vertical axis scales are different in the two figures.

Therefore, the marginal pdf of Y1 is given by

fY1(y1) =

 y1 +
1

2
, 0 ≤ y1 ≤ 1

0, otherwise.

The marginal pdf of Y2 is nonzero when 0 ≤ y2 ≤ 2. For these values, the pdf is found as
follows:

fY2(y2) =

∫
R
fY1,Y2(y1, y2) dy1 =

∫ 1

y1=0

(
2y1 + 2− y2

4

)
dy1

=
1

4

[(
y2

1 + 2y1 − y1y2

)∣∣∣∣1
y1=0

]
=

1

4
(1 + 2− y2) =

1

4
(3− y2).

Therefore, the marginal pdf of Y2 is given by

fY2(y2) =


1

4
(3− y2), 0 ≤ y2 ≤ 2

0, otherwise.

Note: It is easy to verify that both fY1(y1) and fY2(y2) are valid (univariate) pdfs; i.e., both
functions are nonnegative and integrate to one over their respective supports. Both marginal
pdfs are shown in Figure 5.4 (see above).

Q: How would we calculate P (Y1 < 0.5), the probability the collision loss Y1 is less than 0.5?

PAGE 119



STAT 511: CHAPTER 5 JOSHUA M. TEBBS

A: We could actually do this in two ways. Probably the easiest way is to just use the
marginal pdf fY1(y1). From Chapter 4, we know

P (Y1 < 0.5) =

∫ 0.5

0

fY1(y1)dy1 =

∫ 0.5

0

(
y1 +

1

2

)
dy1 =

(
y2

1

2
+
y1

2

)∣∣∣∣0.5
0

= 0.375.

Note that we have calculated the area under fY1(y1) over the set {y1 : 0 < y1 < 0.5}; see
Figure 5.4 (left).

We could also find P (Y1 < 0.5) by using the joint pdf fY1,Y2(y1, y2). To see how, note that

{Y1 < 0.5} = {0 < Y1 < 0.5, 0 < Y2 < 2}.

Therefore, we could calculate the volume under fY1,Y2(y1, y2) over the two-dimensional set

B = {(y1, y2) : 0 < y1 < 0.5, 0 < y2 < 2} ;

see Figure 5.3. As a double integral, this equals

P (Y1 < 0.5) =

∫ 0.5

y1=0

∫ 2

y2=0

fY1,Y2(y1, y2)dy2dy1 =

∫ 0.5

y1=0

∫ 2

y2=0

(
2y1 + 2− y2

4

)
dy2︸ ︷︷ ︸

= fY1 (y1)

dy1 = 0.375.�

> library(pracma)

> joint.pdf <- function(y1,y2) (2*y1+2-y2)/4

> integral2(joint.pdf,0,0.5,0,2)

$Q

[1] 0.375

$error

[1] 0

Example 5.4. An engineering system consists of two components whose lifetimes are de-
noted by Y1 and Y2 and whose joint pdf is given by

fY1,Y2(y1, y2) =


1

32
y2

2e
−(y1+y2)/2, y1 > 0, y2 > 0

0, otherwise.

Note that the support R = {(y1, y2) : y1 > 0, y2 > 0} is the entire first quadrant; see Figure
5.5 (next page). The joint pdf fY1,Y2(y1, y2) is a three-dimensional function which takes the
value (1/32)y2

2e
−(y1+y2)/2 over this region (and equals zero, otherwise).

Let’s find both marginal pdfs. The marginal pdf of Y1 is nonzero when y1 > 0. For these
values, the pdf is found as follows:

fY1(y1) =

∫ ∞
y2=0

1

32
y2

2e
−(y1+y2)/2dy2 =

1

32
e−y1/2

∫ ∞
y2=0

y2
2e
−y2/2dy2︸ ︷︷ ︸

= Γ(3)23=16

=
1

2
e−y1/2.
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y1

y 2

0

0

Figure 5.5: The support R = {(y1, y2) : y1 > 0, y2 > 0} in Example 5.4; i.e., the entire first
quadrant.

Note that in the last integral, the integrand

y2
2e
−y2/2 = y3−1

2 e−y2/2

is the kernel of the gamma(3, 2) distribution, and the integral is over (0,∞). We know
immediately that ∫ ∞

y2=0

y2
2e
−y2/2dy2 = Γ(3)23 = 16.

Therefore, the marginal pdf of Y1 is given by

fY1(y1) =


1

2
e−y1/2, y1 > 0

0, otherwise.

That is, Y1 ∼ exponential(2). The marginal pdf of Y2 is nonzero when y2 > 0. For these
values, the pdf is found as follows:

fY2(y2) =

∫ ∞
y1=0

1

32
y2

2e
−(y1+y2)/2dy1 =

1

16
y2

2e
−y2/2

∫ ∞
y1=0

1

2
e−y1/2dy1︸ ︷︷ ︸

= 1

=
1

16
y2

2e
−y2/2.
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Note that the last integral equals 1 because the integrand is the exponential(2) pdf and this
pdf is being integrated over (0,∞). Therefore, the marginal pdf of Y2 is given by

fY2(y2) =


1

16
y2

2e
−y2/2, y2 > 0

0, otherwise.

Because
1

16
y2

2e
−y2/2 =

1

Γ(3)23
y3−1

2 e−y2/2

and the support of Y2 is {y2 : y2 > 0}, we see immediately that Y2 ∼ gamma(3, 2). �

Interesting: In this example, note that the joint pdf can be written as the product of the
two marginal pdfs; i.e.,

1

32
y2

2e
−(y1+y2)/2 =

1

2
e−y1/2 × 1

16
y2

2e
−y2/2;

i.e., fY1,Y2(y1, y2) = fY1(y1)fY2(y2), for all y1 ∈ R and y2 ∈ R. (Continuous) random variables
Y1 and Y2 that have this property are said to be independent. More on this soon.

5.4 Conditional distributions

5.4.1 The discrete case

Terminology: Suppose Y1 and Y2 are discrete random variables with joint pmf pY1,Y2(y1, y2)
and marginal pmfs pY1(y1) and pY2(y2), respectively. The conditional probability mass
function (pmf) of Y1, given Y2 = y2, is given by

pY1|Y2(y1|y2) =
pY1,Y2(y1, y2)

pY2(y2)
,

whenever pY2(y2) > 0. Similarly, the conditional probability mass function (pmf) of Y2, given
Y1 = y1, is

pY2|Y1(y2|y1) =
pY1,Y2(y1, y2)

pY1(y1)
,

whenever pY1(y1) > 0.

Interpretation: The conditional pmf pY1|Y2(y1|y2) = P (Y1 = y1|Y2 = y2) is a univariate
pmf. It describes the distribution of Y1 (i.e., how Y1 varies) when Y2 is fixed at the value y2.
Similarly, pY2|Y1(y2|y1) = P (Y2 = y2|Y1 = y1) describes the distribution of Y2 (i.e., how Y2

varies) when Y1 is fixed at the value y1.

Recall: In Example 5.1 (notes), we examined the joint distribution of

Y1 = the number of tornados recorded each year in Lee County

Y2 = the number of tornados recorded each year in Van Buren County.
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The joint pmf of Y1 and Y2, pY1,Y2(y1, y2), was described in the table

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 pY1(y1)
y1 = 0 0.64 0.08 0.04 0.76
y1 = 1 0.12 0.06 0.02 0.20
y1 = 2 0.02 0.01 0.01 0.04
pY2(y2) 0.78 0.15 0.07

The marginal pmfs pY1(y1) and pY2(y2) are in the margins of this table.

(a) Find pY1|Y2(y1|y2 = 0), the conditional pmf of Y1 when Y2 = 0.
(b) Find P (Y1 ≤ 1|Y2 = 0).

Solutions. For part (a), the conditional pmf pY1|Y2(y1|y2 = 0) describes the distribution of Y1

when Y2 = 0. This is a univariate pmf with three possible values of Y1, namely, 0, 1, and 2.
These conditional probabilities are calculated below:

pY1|Y2(y1 = 0|y2 = 0) =
pY1,Y2(0, 0)

pY2(0)
=

0.64

0.78
≈ 0.820

pY1|Y2(y1 = 1|y2 = 0) =
pY1,Y2(1, 0)

pY2(0)
=

0.12

0.78
≈ 0.154

pY1|Y2(y1 = 2|y2 = 0) =
pY1,Y2(2, 0)

pY2(0)
=

0.02

0.78
≈ 0.026.

We can display the conditional pmf of Y1 given Y2 = 0 in the following table:

y1 0 1 2
pY1|Y2(y1|y2 = 0) 0.820 0.154 0.026

(b) Using the conditional pmf pY1|Y2(y1|y2 = 0) in part (a), we have

P (Y1 ≤ 1|Y2 = 0) = P (Y1 = 0|Y2 = 0) + P (Y1 = 1|Y2 = 0) = 0.820 + 0.154 = 0.974.

Note that this probability is different than had we calculated P (Y1 ≤ 1) marginally; i.e.,

P (Y1 ≤ 1) = P (Y1 = 0) + P (Y1 = 1) = 0.76 + 0.20 = 0.96. �

5.4.2 The continuous case

Terminology: Suppose Y1 and Y2 are continuous random variables with joint pdf fY1,Y2(y1, y2)
and marginal pdfs fY1(y1) and fY2(y2), respectively. The conditional probability density
function (pdf) of Y1, given Y2 = y2, is given by

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
,
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y1

y 2

0 1

0
1

Figure 5.6: The support R = {(y1, y2) : 0 < y1 < 1, 0 < y2 < 1} in Example 5.5.

whenever fY2(y2) > 0. Similarly, the conditional probability density function (pdf) of Y2,
given Y1 = y1, is

fY2|Y1(y2|y1) =
fY1,Y2(y1, y2)

fY1(y1)
,

whenever fY1(y1) > 0.

Interpretation: The conditional pdf fY1|Y2(y1|y2) is a univariate pdf. It describes the
distribution of Y1 (i.e., how Y1 varies) when Y2 is fixed at the value y2. Similarly, fY2|Y1(y2|y1)
describes the distribution of Y2 (i.e., how Y2 varies) when Y1 is fixed at the value y1.

Example 5.5. The demand for two products, Y1 and Y2, is modeled using the joint pdf

fY1,Y2(y1, y2) =


24

11

(
y2

1 +
y1y2

2

)
, 0 < y1 < 1, 0 < y2 < 1

0, otherwise.

Note that the support R = {(y1, y2) : 0 < y1 < 1, 0 < y2 < 1} is the unit square, shown in
Figure 5.6 (above). The joint pdf fY1,Y2(y1, y2) is a three-dimensional function which takes
the value 24

11
(y2

1 + y1y2/2) over this region (and equals zero, otherwise).
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Figure 5.7: Marginal pdfs fY1(y1) and fY2(y2) in Example 5.5.

(a) Find both marginal distributions.
(b) Find both conditional distributions.

Solutions. (a) Recall that to find the marginal distribution of one variable, we integrate the
joint pdf over the other. Integration is easy here because the bivariate support is the unit
square. The marginal pdf of Y1 is nonzero when 0 < y1 < 1. For these values,

fY1(y1) =

∫ 1

y2=0

24

11

(
y2

1 +
y1y2

2

)
dy2 =

24

11

[(
y2

1y2 +
y1y

2
2

4

)∣∣∣∣1
y2=0

]
=

24

11

(
y2

1 +
y1

4

)
=

6

11
(y1+4y2

1).

The marginal pdf of Y2 is also nonzero when 0 < y2 < 1. For these values,

fY2(y2) =

∫ 1

y1=0

24

11

(
y2

1 +
y1y2

2

)
dy1 =

24

11

[(
y3

1

3
+
y2

1y2

4

)∣∣∣∣1
y1=0

]
=

24

11

(
1

3
+
y2

4

)
=

2

11
(4+3y2).

Summarizing, we have

fY1(y1) =


6

11
(y1 + 4y2

1), 0 < y1 < 1

0, otherwise

and

fY2(y2) =


2

11
(4 + 3y2), 0 < y2 < 1

0, otherwise.

The marginal pdfs fY1(y1) and fY2(y2) are shown side by side in Figure 5.7 (above). It is
easy to show both pdfs are valid.
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(b) The conditional pdf of Y1 is nonzero when 0 < y1 < 1. For these values,

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
=

24
11

(
y2

1 + y1y2
2

)
2
11

(4 + 3y2)
=

12

4 + 3y2

[
y2

1 +
(y2

2

)
y1

]
︸ ︷︷ ︸

quadratic function of y1; y2 fixed

.

The conditional pdf of Y2 is nonzero when 0 < y2 < 1. For these values,

fY2|Y1(y2|y1) =
fY1,Y2(y1, y2)

fY1(y1)
=

24
11

(
y2

1 + y1y2
2

)
6
11

(y1 + 4y2
1)

=
4y2

1

y1 + 4y2
1

+

(
2y1

y1 + 4y2
1

)
y2︸ ︷︷ ︸

linear function of y2; y1 fixed

.

Summarizing,

fY1|Y2(y1|y2) =


12

4 + 3y2

[
y2

1 +
(y2

2

)
y1

]
, 0 < y1 < 1

0, otherwise

and

fY2|Y1(y2|y1) =


4y2

1

y1 + 4y2
1

+

(
2y1

y1 + 4y2
1

)
y2, 0 < y2 < 1

0, otherwise.

Important: Both fY1|Y2(y1|y2) and fY2|Y1(y2|y1) are univariate pdfs! The conditioning vari-
able is regarded as fixed.

Q: How would we calculate P (Y1 >
1
2
|Y2 = 1

3
)?

A: This is a conditional probability, so we calculate it using the conditional pdf fY1|Y2(y1|y2).
Specifically, when y2 = 1

3
, the pdf fY1|Y2(y1|y2) above reduces to

fY1|Y2(y1|y2 = 1/3) =


12

5
y2

1 +
2

5
y1, 0 < y1 < 1

0, otherwise.

Therefore,

P

(
Y1 >

1

2

∣∣∣∣Y2 =
1

3

)
=

∫ 1

y1= 1
2

fY1|Y2(y1|y2 = 1/3)dy1

=

∫ 1

y1= 1
2

(
12

5
y2

1 +
2

5
y1

)
dy1

=

(
12

15
y3

1 +
2

10
y2

1

)∣∣∣∣1
y1= 1

2

=
12

15
+

2

10
− 12

120
− 2

40
= 0.85.

The conditional pdf fY1|Y2(y1|y2 = 1/3) is shown in Figure 5.8 (see next page).

Exercise: Calculate P (Y2 ≤ 1
2
|Y1 = 1

4
). Hint: Use fY2|Y1(y2|y1) when y1 = 1

4
.
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Figure 5.8: The conditional pdf fY1|Y2(y1|y2) in Example 5.5 when y2 = 1
3
. The shaded area

corresponds to P (Y1 >
1
2
|Y2 = 1

3
).

Remark: It is interesting to compare the marginal distribution of Y1, which is described by

fY1(y1) =


6

11
(y1 + 4y2

1), 0 < y1 < 1

0, otherwise,

to the conditional distribution of Y1 (when Y2 = 1
3
), which is described by

fY1|Y2(y1|y2 = 1/3) =


12

5
y2

1 +
2

5
y1, 0 < y1 < 1

0, otherwise.

Both pdfs describe the distribution of Y1. However,

• The marginal pdf describes how Y1 is distributed after removing the influence of Y2.

• The conditional pdf describes how Y1 is distributed after incorporating information
about the value of Y2.
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y1
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Figure 5.9: The support R = {(y1, y2) : 0 < y1 < y2 <∞} in Example 5.6.

Note that fY1(y1) 6= fY1|Y2(y1|y2 = 1/3); i.e., knowledge of what Y2 is changes how Y1

is distributed. Incorporating this knowledge also changes how probabilities are assigned.
Recall that we calculated

P

(
Y1 >

1

2

∣∣∣∣Y2 =
1

3

)
= 0.85.

Had we ignored Y2 and calculated P (Y1 >
1
2
) marginally, we would get

P

(
Y1 >

1

2

)
=

∫ 1

y1= 1
2

fY1(y1)dy1 =

∫ 1

y1= 1
2

6

11
(y1 + 4y2

1)dy1 ≈ 0.841. �

Example 5.6. Suppose Y = (Y1, Y2) is a continuous random vector with joint pdf

fY1,Y2(y1, y2) =

{
e−y2 , 0 < y1 < y2 <∞

0, otherwise.

Note that the support R = {(y1, y2) : 0 < y1 < y2 <∞} is shown in Figure 5.9 (see above).
The joint pdf fY1,Y2(y1, y2) is a three-dimensional function which takes the value e−y2 over
this region (and equals zero, otherwise).
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(a) Find both marginal distributions.
(b) Find both conditional distributions.

Solutions. (a) The marginal pdf of Y1 is nonzero when y1 > 0. For these values,

fY1(y1) =

∫ ∞
y2=y1

e−y2dy2 = −e−y2
∣∣∞
y2=y1

= −
(

lim
y2→∞

e−y2 − e−y1
)

= e−y1 .

The marginal pdf of Y2 is also nonzero when y2 > 0. For these values,

fY2(y2) =

∫ y2

y1=0

e−y2dy1 = y1e
−y2
∣∣y2
y1=0

= y2e
−y2 − 0 = y2e

−y2 .

Summarizing, we have

fY1(y1) =

{
e−y1 , y1 > 0,

0, otherwise

and

fY2(y2) =

{
y2e
−y2 , y2 > 0,

0, otherwise.

It is easy to show that both marginal pdfs fY1(y1) and fY2(y2) are valid. In fact, both
marginal distributions are well known; i.e.,

Y1 ∼ exponential(1)

Y2 ∼ gamma(2, 1).

(b) The conditional pdf of Y1 is nonzero when 0 < y1 < y2, where y2 is fixed. For these
values,

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
=

e−y2

y2e−y2
=

1

y2

.

The conditional pdf of Y2 is nonzero when y2 > y1, where y1 > 0 is fixed. For these values,

fY2|Y1(y2|y1) =
fY1,Y2(y1, y2)

fY1(y1)
=
e−y2

e−y1
= e−(y2−y1).

Summarizing, we have

fY1|Y2(y1|y2) =


1

y2

, 0 < y1 < y2

0, otherwise

and

fY2|Y1(y2|y1) =

{
e−(y2−y1), y2 > y1

0, otherwise.

Interesting: Recall that both conditional pdfs are univariate pdfs. In fact, Y1|Y2 = y2 ∼
U(0, y2); i.e., conditional on Y2 = y2, the random variable Y1 is uniformly distributed from
0 to y2. The conditional pdf of Y2 is that of a “shifted” exponential(1) pdf, where the fixed
value of y1 denotes the shift. �
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5.5 Independence

Remark: Informally, we say two random variables are independent if the value of one
random variable does not affect how we assign probabilities to events involving the other
one. Recall that if two events A and B are independent, then

P (A ∩B) = P (A)P (B).

In terms of independent random variables Y1 and Y2, this translates into statements like

P (a < Y1 < b, c < Y2 < d)︸ ︷︷ ︸
calculated using the joint pmf/pdf

= P (a < Y1 < b)P (c < Y2 < d)︸ ︷︷ ︸
calculated using marginal pmfs/pdfs

.

In other words, probabilities calculated using joint distributions can be “broken down” into
calculations using marginal distributions (which are often easier). We now describe formally
what it means for random variables to be independent.

Terminology: Suppose Y1 and Y2 are discrete random variables with joint pmf pY1,Y2(y1, y2)
and marginal pmfs pY1(y1) and pY2(y2), respectively. We say Y1 and Y2 are independent if

pY1,Y2(y1, y2) = pY1(y1)pY2(y2),

for all (y1, y2) ∈ R2. In other words, the joint pmf factors into the product of the marginal
pmfs.

Recall: In Example 5.1 (notes), we examined the joint distribution of

Y1 = the number of tornados recorded each year in Lee County

Y2 = the number of tornados recorded each year in Van Buren County.

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 pY1(y1)
y1 = 0 0.64 0.08 0.04 0.76
y1 = 1 0.12 0.06 0.02 0.20
y1 = 2 0.02 0.01 0.01 0.04
pY2(y2) 0.78 0.15 0.07

Note: For Y1 and Y2 to be independent, we would need

pY1,Y2(y1, y2) = pY1(y1)pY2(y2)

to hold for all (y1, y2) in the support

R = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)}.

However, this condition does not even hold for the first value (0, 0); i.e.,

0.64 = pY1,Y2(0, 0) 6= pY1(0)pY2(0) = 0.76(0.78) = 0.5928.

Therefore, Y1 and Y2 are not independent.
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Example 5.7. Suppose Y = (Y1, Y2) is a discrete random vector with joint pmf

pY1,Y2(y1, y2) =


y1y

2
2

30
, y1 = 1, 2, 3, y2 = 1, 2

0, otherwise.

Here is the joint pmf of Y1 and Y2 written out in tabular form; the marginal pmfs pY1(y1)
and pY2(y2) are in the margins.

pY1,Y2(y1, y2) y2 = 1 y2 = 2 pY1(y1)
y1 = 1 1/30 4/30 5/30
y1 = 2 2/30 8/30 10/30
y1 = 3 3/30 12/30 15/30
pY2(y2) 6/30 24/30

It is easy to verify that
pY1,Y2(y1, y2) = pY1(y1)pY2(y2)

for all (y1, y2) in the support

R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}.

For example,
1

30
= pY1,Y2(1, 1) = pY1(1)pY2(1) =

5

30
× 6

30
.

Therefore, Y1 and Y2 are independent. �

Terminology: Suppose Y1 and Y2 are continuous random variables with joint pdf fY1,Y2(y1, y2)
and marginal pdfs fY1(y1) and fY2(y2), respectively. We say Y1 and Y2 are independent if

fY1,Y2(y1, y2) = fY1(y1)fY2(y2),

for all (y1, y2) ∈ R2. In other words, the joint pdf factors into the product of the marginal
pdfs.

Example 5.8. This past year was an encouraging year for biodiversity discovery, as scientists
identified thousands of new species of life. For one newly discovered species, geneticists model

Y1 = the percentage of the species possessing Trait 1

Y2 = the percentage of the species possessing Trait 2

using the joint pdf

fY1,Y2(y1, y2) =

{
12y3

1(1− y2)2, 0 < y1 < 1, 0 < y2 < 1

0, otherwise.

Show that Y1 and Y2 are independent.
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y1

y 2

0 1

0
1

Figure 5.10: The support R = {(y1, y2) : 0 < y1 < 1, 0 < y2 < 1} in Example 5.8.

Proof. It suffices to show fY1,Y2(y1, y2) = fY1(y1)fY2(y2), where fY1(y1) and fY2(y2) are the
marginal pdfs.

The marginal pdf of Y1 is nonzero when 0 < y1 < 1. For these values,

fY1(y1) =

∫ 1

y2=0

12y3
1(1− y2)2dy2 = 12y3

1

∫ 1

y2=0

(1− y2)2dy2

= −12y3
1

∫ 0

u=1

u2du (u = 1− y2)

= −12y3
1

(
0− 1

3

)
= 4y3

1.

The marginal pdf of Y2 is also nonzero when 0 < y2 < 1. For these values,

fY2(y2) =

∫ 1

y1=0

12y3
1(1− y2)2dy1 = 12(1− y2)2

∫ 1

y2=0

y3
1dy1

= 12(1− y2)2

(
1

4
− 0

)
= 3(1− y2)2.
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Summarizing, we have

fY1(y1) =

{
4y3

1, 0 < y1 < 1

0, otherwise

and

fY2(y2) =

{
3(1− y2)2, 0 < y2 < 1

0, otherwise.

It is easy to see that the joint pdf

fY1,Y2(y1, y2) = 12y3
1(1− y2)2 = 4y3

1 × 3(1− y2)2 = fY1(y1)fY2(y2),

for all (y1, y2) ∈ R2. Therefore, Y1 and Y2 are independent. �

Implication: Suppose we wanted to calculate P (Y1 >
1
2
, Y2 <

1
2
) in Example 5.8. We could

always calculate this using the joint pdf of Y1 and Y2; i.e.,

P

(
Y1 >

1

2
, Y2 <

1

2

)
=

∫ 1

y1= 1
2

∫ 1
2

y2=0

12y3
1(1− y2)2dy2dy1.

However, because Y1 and Y2 are independent, we can write

P

(
Y1 >

1

2
, Y2 <

1

2

)
= P

(
Y1 >

1

2

)
P

(
Y2 <

1

2

)
and then make two simpler calculations using the marginal distributions above.

Example 5.9. In Example 5.6 (notes), we considered the joint pdf

fY1,Y2(y1, y2) =

{
e−y2 , 0 < y1 < y2 <∞

0, otherwise

and derived the marginal pdfs to be

fY1(y1) =

{
e−y1 , y1 > 0

0, otherwise
and fY2(y2) =

{
y2e
−y2 , y2 > 0

0, otherwise.

In this example, we see that

fY1,Y2(y1, y2) = e−y2 6= e−y1 × y2e
−y2 = fY1(y1)fY2(y2).

Therefore, Y1 and Y2 are not independent. �

Remark: Upon closer inspection, it should be obvious that the random variables Y1 and Y2

in Example 5.9 are not independent. Take a look at the support:

R = {(y1, y2) : 0 < y1 < y2 <∞}.
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y1

y 2

0 a b

0
c

d

Figure 5.11: Bivariate support of the form R = {(y1, y2) : a ≤ y1 ≤ b, c ≤ y2 ≤ d}.

This support involves a constraint between y1 and y2, namely, y1 is always smaller than y2.
Therefore, if someone tells you the value of Y1, then you have information about what Y2 is.
Y1 and Y2 can not independent if this is true. Random variables whose joint pdf involves a
constraint like the one in Example 5.9 can never be independent.

Result: Suppose Y1 and Y2 are continuous random variables with joint pdf fY1,Y2(y1, y2),
which is strictly positive over the support set

R = {(y1, y2) : a ≤ y1 ≤ b, c ≤ y2 ≤ d},

where a, b, c, d are all constants; fY1,Y2(y1, y2) = 0, otherwise. Then Y1 and Y2 are independent
if and only if we can write

fY1,Y2(y1, y2) = g(y1)h(y2),

for all (y1, y2) ∈ R2, where g(y1) is a nonnegative function of y1 only and h(y2) is a nonneg-
ative function of y2 only.

Remark: The usefulness of this result is g(y1) and h(y2) can be any nonnegative functions
of y1 and y2, respectively; they need not be pdfs. Note the support R cannot involve a
constraint between y1 and y2 for this result to be applicable; e.g., see Figure 5.11 (above).
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Proof. Suppose Y1 and Y2 are continuous random variables with joint pdf fY1,Y2(y1, y2) and
marginal pdfs fY1(y1) and fY2(y2), respectively. Showing the necessity (=⇒) is easy. Sup-
pose Y1 and Y2 are independent and take g(y1) = fY1(y1) and h(y2) = fY2(y2). Because
fY1,Y2(y1, y2) = fY1(y1)fY2(y2), we have shown there exist nonnegative functions g(y1) and
h(y2) satisfying fY1,Y2(y1, y2) = g(y1)h(y2). Now for the sufficiency (⇐=). Suppose the fac-
torization holds; i.e., suppose fY1,Y2(y1, y2) = g(y1)h(y2), for all (y1, y2) ∈ R2, for nonnegative
functions g(y1) and h(y2). Let∫

R
g(y1)dy1 = c and

∫
R
h(y2)dy2 = d.

Note that

cd =

∫
R
g(y1)dy1

∫
R
h(y2)dy2 =

∫
R

∫
R
g(y1)h(y2)dy1dy2 =

∫ ∫
R2

fY1,Y2(y1, y2)dy1dy2 = 1,

because the factorization fY1,Y2(y1, y2) = g(y1)h(y2) holds by assumption. Furthermore,

fY1(y1) =

∫
R
fY1,Y2(y1, y2)dy2 =

∫
R
g(y1)h(y2)dy2 = dg(y1).

An analogous argument shows fY2(y2) = ch(y2). Therefore, for all (y1, y2) ∈ R2, we have

fY1,Y2(y1, y2) = g(y1)h(y2) = dg(y1)ch(y2) = fY1(y1)fY2(y2). �

Note: The proof of this result in the discrete case is analogous; simply replace pdfs with
pmfs and integrals with sums.

Example 5.10. Suppose Y = (Y1, Y2) is a continuous random vector with joint pdf

fY1,Y2(y1, y2) =


cy2

1e
y1

y2

, 0 < y1 < 1, 1 < y2 < 2

0, otherwise,

where the constant satisfies c−1 = (e − 1) ln 2. We know immediately that Y1 and Y2 are
independent because the support R = {(y1, y2) : 0 < y1 < 1, 1 < y2 < 2} does not involve a
constraint and

fY1,Y2(y1, y2) =
cy2

1e
y1

y2

= cy2
1e
y1 × 1

y2

= g(y1)h(y2). �

Example 5.11. Suppose Y = (Y1, Y2) is a continuous random vector with joint pdf

fY1,Y2(y1, y2) =


1

384
y2

1y
4
2e
−y2−y1/2, 0 < y1 <∞, 0 < y2 <∞

0, otherwise.

Again, we know immediately that Y1 and Y2 are independent because the support R =
{(y1, y2) : 0 < y1 <∞, 0 < y2 <∞} does not involve a constraint and

fY1,Y2(y1, y2) =
1

384
y2

1y
4
2e
−y2−y1/2 =

1

384
y2

1e
−y1/2 × y4

2e
−y2 = g(y1)h(y2). �
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5.6 More on independence

Note: We now describe alternative ways to characterize independence of random variables
Y1 and Y2, further implications of independence, and extensions to higher dimensions.

Terminology: Suppose that Y = (Y1, Y2) is a random vector−discrete or continuous. The
joint cumulative distribution function (cdf) of (Y1, Y2) is

FY1,Y2(y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2), for all (y1, y2) ∈ R2.

As in the univariate case, a random vector’s cdf completely determines its distribution.

• If Y1 and Y2 are discrete with joint pmf pY1,Y2(y1, y2), then

FY1,Y2(y1, y2) =
∑
t2≤y2

∑
t1≤y1

pY1,Y2(t1, t2).

• If Y1 and Y2 are continuous with joint pdf fY1,Y2(y1, y2), then

FY1,Y2(y1, y2) =

∫ y2

−∞

∫ y1

−∞
fY1,Y2(t1, t2)dt1dt2

and
∂2FY1,Y2(y1, y2)

∂y1∂y2

= fY1,Y2(y1, y2).

Result: Suppose Y1 and Y2 are random variables (discrete or continuous) with joint cdf
FY1,Y2(y1, y2). Then Y1 and Y2 are independent if and only if

FY1,Y2(y1, y2) = FY1(y1)FY2(y2),

for all (y1, y2) ∈ R2, where FY1(y1) and FY2(y2) are the marginal cdfs of Y1 and Y2, respectively.

Example 5.12. In Example 5.11, we considered random variables Y1 and Y2 whose joint
pdf was

fY1,Y2(y1, y2) =


1

384
y2

1y
4
2e
−y2−y1/2, 0 < y1 <∞, 0 < y2 <∞

0, otherwise.

Calculate FY1,Y2(2, 3) = P (Y1 ≤ 2, Y2 ≤ 3).

Solution. One way to do this would be to simply work with the joint pdf and write

P (Y1 ≤ 2, Y2 ≤ 3) =

∫ 2

y1=0

∫ 3

y2=0

1

384
y2

1y
4
2e
−y2−y1/2dy2dy1.

We could do this integral “by hand” or numerically in R.
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A different way to calculate FY1,Y2(2, 3) = P (Y1 ≤ 2, Y2 ≤ 3) is to first note that Y1 and Y2

are independent (Example 5.11). Therefore,

P (Y1 ≤ 2, Y2 ≤ 3) = FY1,Y2(2, 3) = FY1(2)FY2(3) = P (Y1 ≤ 2)P (Y2 ≤ 3).

Now, from the joint pdf (and looking at the support), you should be able to conclude that

Y1 ∼ gamma(3, 2)

Y2 ∼ gamma(5, 1).

Therefore, P (Y1 ≤ 2) and P (Y2 ≤ 3) can be calculated separately from these marginal
distributions; e.g.,

> pgamma(2,3,1/2)*pgamma(3,5,1)

[1] 0.01483462

Curiosity: What happens to conditional distributions under independence? Suppose
Y1 and Y2 are continuous and recall the conditional pdf of Y1 given Y2 = y2 is given by

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
,

wherever fY2(y2) > 0. If Y1 and Y2 are independent, then fY1,Y2(y1, y2) = fY1(y1)fY2(y2) and
hence

fY1|Y2(y1|y2) =
fY1(y1)fY2(y2)

fY2(y2)
= fY1(y1).

In other words, the value of Y2 = y2 has no effect on the distribution of Y1. Similarly,

fY2|Y1(y2|y1) =
fY1(y1)fY2(y2)

fY1(y1)
= fY2(y2).

The discrete conclusion is analogous; simply replace pdfs with pmfs.

Result: Suppose Y1 and Y2 are independent random variables (discrete or continuous). The
random variables U1 = g(Y1) and U2 = h(Y2) are also independent. In other words, functions
of independent random variables are independent.

Illustration: Suppose Y1 and Y2 are independent random variables. The following pairs of
random variables are also independent:

Y 2
1 and Y 3

2

sinY1 and lnY2√
Y1 − 4 and e−Y2 .

Proof. Suppose Y1 and Y2 are independent. Assume Y1 and Y2 are continuous. For any
u1, u2 ∈ R, define the sets

Au1 = {y1 ∈ R : g(y1) ≤ u1} and Bu2 = {y2 ∈ R : h(y2) ≤ u2}.
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The joint cdf of U1 = g(Y1) and U2 = h(Y2) is

FU1,U2(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) = P (g(Y1) ≤ u1, h(Y2) ≤ u2)

= P (Y1 ∈ Au1 , Y2 ∈ Bu2) = P (Y1 ∈ Au1)P (Y2 ∈ Bu2),

because Y1 and Y2 are independent by assumption. Therefore, the joint pdf of U1 = g(Y1)
and U2 = h(Y2) is

fU1,U2(u1, u2) =
∂2

∂u1∂u2

FU1,U2(u1, u2) =
∂2

∂u1∂u2

P (Y1 ∈ Au1)P (Y2 ∈ Bu2)

=
d

du1

P (Y1 ∈ Au1)︸ ︷︷ ︸
function of u1

d

du2

P (Y2 ∈ Au2)︸ ︷︷ ︸
function of u2

.

We have shown the joint pdf fU1,U2(u1, u2) factors into the product of two functions−one of
which depends only on u1 and the other which depends only on u2. Thus, U1 and U2 are
independent. The discrete case is analogous. �

Extension: Suppose Y1, Y2, ..., Yn are random variables. We call

Y = (Y1, Y2, ..., Yn)

a random vector (which is n-dimensional). We say that Y1, Y2, ..., Yn are mutually inde-
pendent if the joint cdf

FY(y1, y2, ..., yn) = P (Y1 ≤ y1, Y2 ≤ y2, ..., Yn ≤ yn)

= P (Y1 ≤ y1)P (Y2 ≤ y2) · · ·P (Yn ≤ yn) = FY1(y1)FY2(y2) · · ·FYn(yn).

This is a generalization of the independence result for cdfs we stated in the two-dimensional
(n = 2) case.

Remark: We can also describe independence in terms of joint pmfs/pdfs for random vari-
ables Y1, Y2, ..., Yn. In the discrete case, the joint probability mass function (pmf)

pY(y1, y2, ..., yn) = P (Y1 = y1, Y2 = y2, ..., Yn = yn).

If Y1, Y2, ..., Yn are mutually independent, then the joint pmf

pY(y1, y2, ..., yn) = P (Y1 = y1, Y2 = y2, ..., Yn = yn)

= P (Y1 = y1)P (Y2 = y2) · · ·P (Yn = yn) = pY1(y1)pY2(y2) · · · pYn(yn)︸ ︷︷ ︸
product of marginal pmfs

,

for all y = (y1, y2, ..., yn) ∈ Rn. In the continuous case, the joint cdf FY(y1, y2, ..., yn) and
the joint pdf fY(y1, y2, ..., yn) are related through

FY(y1, y2, ..., yn) =

∫ yn

−∞
· · ·
∫ y2

−∞

∫ y1

−∞
fY(t1, t2, ..., tn)dt1dt2 · · · dtn
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and
∂n

∂y1∂y2 · · · ∂yn
FY(y1, y2, ..., yn) = fY(y1, y2, ..., yn),

provided this partial derivative exists. If Y1, Y2, ..., Yn are mutually independent, then the
joint pdf

fY(y1, y2, ..., yn) = fY1(y1)fY2(y2) · · · fYn(yn)︸ ︷︷ ︸
product of marginal pdfs

,

for all y = (y1, y2, ..., yn) ∈ Rn. These results will be used repeatedly in STAT 512/513.

Example 5.13. Suppose Y1, Y2, Y3 are mutually independent Poisson random variables,
where

Y1 ∼ Poisson(λ1 = 1)

Y2 ∼ Poisson(λ2 = 2)

Y3 ∼ Poisson(λ3 = 3).

Find the joint pmf of Y = (Y1, Y2, Y3).

Solution. Because Y1, Y2, Y3 are mutually independent, the joint pmf is the product of the
marginal pmfs. For each yi = 0, 1, 2, ..., we have

pY(y1, y2, y3) = pY1(y1)pY2(y2)pY3(y3) =
1y1e−1

y1!
× 2y2e−2

y2!
× 3y3e−3

y3!
=
e−62y23y3

y1!y2!y3!
.

Summarizing,

pY(y1, y2, y3) =


e−62y23y3

y1!y2!y3!
, y1 = 0, 1, 2, ..., y2 = 0, 1, 2, ..., y3 = 0, 1, 2, ...,

0, otherwise.

Example 5.14. Suppose Y1, Y2, Y3 are mutually independent exponential random variables,
where

Y1 ∼ exponential(β)

Y2 ∼ exponential(β)

Y3 ∼ exponential(β).

Find the joint pdf of Y = (Y1, Y2, Y3).

Solution. Because Y1, Y2, Y3 are mutually independent, the joint pdf is the product of the
marginal pdfs. For each yi > 0, we have

fY(y1, y2, y3) = fY1(y1)fY2(y2)fY3(y3)

=
1

β
e−y1/β × 1

β
e−y2/β × 1

β
e−y3/β =

1

β3
e−(y1+y2+y3)/β.

Summarizing,

fY(y1, y2, y3) =


1

β3
e−(y1+y2+y3)/β, y1 > 0, y2 > 0, y3 > 0

0, otherwise.
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5.7 Mathematical expectation

Terminology: Suppose Y = (Y1, Y2, ..., Yn) is a random vector (discrete or continuous) and
suppose g is a vector-valued function mapping vectors in n-dimensional space to the real
number line; i.e., g : Rn → R.

• If Y = (Y1, Y2, ..., Yn) is discrete, then

E[g(Y1, Y2, ..., Yn)] =
∑
all yn

· · ·
∑
all y2

∑
all y1

g(y1, y2, ..., yn)pY(y1, y2, ..., yn).

• If Y = (Y1, Y2, ..., Yn) is continuous, then

E[g(Y1, Y2, ..., Yn)] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ ∞
−∞

g(y1, y2, ..., yn)fY(y1, y2, ..., yn)dy1dy2 · · · dyn.

The usual existence issues arise. We need the sum/integral above to be absolutely convergent;
otherwise, we say that E[g(Y1, Y2, ..., Yn)] does not exist.

Remark: Although these expressions apply for general random vectors Y = (Y1, Y2, ..., Yn),
we are often interested in these formulas when n = 2. In other words, Y = (Y1, Y2) is a
bivariate random vector, g : R2 → R, and

E[g(Y1, Y2)] =
∑∑
(y1,y2)∈R

g(y1, y2)pY1,Y2(y1, y2) (discrete case)

E[g(Y1, Y2)] =

∫ ∫
R2

g(y1, y2)fY1,Y2(y1, y2)dy1dy2 (continuous case).

Recall: In Example 5.1 (notes), we examined the joint distribution of

Y1 = the number of tornados recorded each year in Lee County

Y2 = the number of tornados recorded each year in Van Buren County.

The joint pmf of Y1 and Y2 was described in the following table:

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2
y1 = 0 0.64 0.08 0.04
y1 = 1 0.12 0.06 0.02
y1 = 2 0.02 0.01 0.01

The expected value of the number of tornados in the two counties combined (Y1 + Y2) is

E(Y1 + Y2) =
∑∑
(y1,y2)∈R

(y1 + y2)pY1,Y2(y1, y2)

= (0 + 0)(0.64) + (1 + 0)(0.12) + (2 + 0)(0.02) + (0 + 1)(0.08) + (1 + 1)(0.06)

+(2 + 1)(0.01) + (0 + 2)(0.04) + (1 + 2)(0.02) + (2 + 2)(0.01)

= 0.57.

Q: How could you calculate V (Y1 + Y2), the variance of the total number of tornados?
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A: One way you could do this is to use the variance computing formula for Y1 + Y2; i.e.,

V (Y1 + Y2) = E[(Y1 + Y2)2]− [E(Y1 + Y2)]2.

The second moment of Y1 + Y2 is

E[(Y1 + Y2)2] =
∑∑
(y1,y2)∈R

(y1 + y2)2pY1,Y2(y1, y2)

= (0 + 0)2(0.64) + (1 + 0)2(0.12) + (2 + 0)2(0.02)

+(0 + 1)2(0.08) + (1 + 1)2(0.06) + (2 + 1)2(0.01)

+(0 + 2)2(0.04) + (1 + 2)2(0.02) + (2 + 2)2(0.01) = 1.11.

Therefore,
V (Y1 + Y2) = 1.11− (0.57)2 ≈ 0.785.

Example 5.15. Suppose Y = (Y1, Y2) is a continuous random vector with joint pdf

fY1,Y2(y1, y2) =

{
6y2

1y2, 0 < y1 < y2, y1 + y2 < 2

0, otherwise.

(a) Calculate E(Y1Y2).
(b) Calculate E(Y1).

Solutions. (a) Based on the support in Figure 5.12 (see next page), you should see that it is
easier to integrate with respect to y2 first. We have

E(Y1Y2) =

∫ 1

y1=0

∫ 2−y1

y2=y1

y1y2 6y2
1y2 dy2dy1

=

∫ 1

y1=0

∫ 2−y1

y2=y1

6y3
1y

2
2 dy2dy1

=

∫ 1

y1=0

6y3
1

[(
y3

2

3

)∣∣∣∣2−y1
y2=y1

]
dy1

=

∫ 1

y1=0

2y3
1

[
(2− y1)3 − y3

1

]
dy1

=

∫ 1

y1=0

2y3
1

(
8− 12y1 + 6y2

1 − 2y3
1

)
dy1

=

∫ 1

y1=0

(
16y3

1 − 24y4
1 + 12y5

1 − 4y6
1

)
dy1 =

16

4
− 24

5
+

12

6
− 4

7
≈ 0.629.

Note that had we elected to integrate in the y1 direction first, we would have to compute

E(Y1Y2) =

∫ 1

y2=0

∫ y2

y1=0

y1y2 6y2
1y2 dy1dy2︸ ︷︷ ︸

over lower triangle

+

∫ 2

y2=1

∫ 2−y2

y1=0

y1y2 6y2
1y2 dy1dy2︸ ︷︷ ︸

over upper triangle

.
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y 2

0 1 2

0
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2

Figure 5.12: The support R = {(y1, y2) : 0 < y1 < y2, y1 + y2 < 2} in Example 5.15. The
lower boundary line is y2 = y1 and the upper is y2 = 2− y1.

(b) We could calculate E(Y1) in two ways. Noting that g(Y1, Y2) = Y1 is a function of Y1

and Y2, we could use the joint pdf and calculate

E(Y1) =

∫ 1

y1=0

∫ 2−y1

y2=y1

y1 6y2
1y2 dy2dy1

directly. The other way would be to first derive the marginal pdf fY1(y1) and then calculate

E(Y1) =

∫ 1

y1=0

y1fY1(y1)dy1.

Essentially, this is what you are doing when you calculate E(Y1) using the joint pdf above
anyway. Note that

E(Y1) =

∫ 1

y1=0

∫ 2−y1

y2=y1

y1 6y2
1y2 dy2dy1 =

∫ 1

y1=0

y1

∫ 2−y1

y2=y1

6y2
1y2 dy2︸ ︷︷ ︸

= fY1 (y1)

dy1.

For 0 < y1 < 1, the marginal pdf of Y1 is

fY1(y1) =

∫ 2−y1

y2=y1

6y2
1y2 dy2 = 12y2

1(1− y1) =
Γ(5)

Γ(3)Γ(2)
y3−1

1 (1− y1)2−1;
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i.e., Y1 ∼ beta(3, 2). Using what we know about the beta distribution, the mean is

E(Y1) =
α

α + β
=

3

3 + 2
= 0.6. �

Properties: The expectation operator E(·) enjoys the same properties when working with
multivariate distributions of discrete and continuous random vectors Y = (Y1, Y2, ..., Yn).
For example, when n = 2, we have

1. E(c) = c, for any constant c ∈ R

2. E[cg(Y1, Y2)] = cE[g(Y1, Y2)]

3. For real functions g1, g2, ..., gk,

E

[
k∑
j=1

gj(Y1, Y2)

]
=

k∑
j=1

E[gj(Y1, Y2)].

Result: Suppose Y1 and Y2 are independent random variables, and suppose g(Y1) and
h(Y2) are functions of Y1 and Y2, respectively. Then

E[g(Y1)h(Y2)] = E[g(Y1)]E[h(Y2)],

provided that all expectations exist. In other words, the expectation of the product is the
product of the expectations. This is only true when Y1 and Y2 are independent.

Proof. We’ll prove this result in the continuous case. Suppose Y1 and Y2 are independent
with joint pdf fY1,Y2(y1, y2) and marginal pdfs fY1(y1) and fY2(y2), respectively. Using the
definition of mathematical expectation, we have

E[g(Y1)h(Y2)] =

∫ ∫
R2

g(y1)h(y2)fY1,Y2(y1, y2)dy1dy2

=

∫ ∫
R2

g(y1)h(y2)fY1(y1)fY2(y2)dy1dy2

=

∫
R
g(y1)fY1(y1)dy1

∫
R
h(y2)fY2(y2)dy2 = E[g(Y1)]E[h(Y2)].

The proof of this result in the discrete case is analogous; simply replace pdfs with pmfs and
integrals with sums. �

Example 5.16. In Example 5.4, we considered the joint pdf

fY1,Y2(y1, y2) =


1

32
y2

2e
−(y1+y2)/2, y1 > 0, y2 > 0

0, otherwise

for an engineering system with two components whose lifetimes are denoted by Y1 and Y2.
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(a) Calculate E(Y 3
1 Y

2
2 ).

(b) Calculate the expected value of the ratio Y1/Y2; i.e.,

E

(
Y1

Y2

)
.

Solutions. (a) We could appeal to the definition of mathematical expectation and calculate

E(Y 3
1 Y

2
2 ) =

∫ ∞
y1=0

∫ ∞
y2=0

y3
1y

2
2

1

32
y2

2e
−(y1+y2)/2 dy2dy1

directly. However, we saw in Example 5.4 that

Y1 ∼ exponential(2)

Y2 ∼ gamma(3, 2)

and that Y1 and Y2 are independent. Therefore,

E(Y 3
1 Y

2
2 ) = E(Y 3

1 )E(Y 2
2 ).

The third moment of Y1 is

E(Y 3
1 ) =

∫ ∞
0

y3
1

1

2
e−y1/2dy1 =

1

2
Γ(4)24 = 48.

Also, from the variance computing formula,

V (Y2) = E(Y 2
2 )− [E(Y2)]2 =⇒ E(Y 2

2 ) = V (Y2) + [E(Y2)]2 = 3(2)2 + [3(2)]2 = 48.

Therefore,
E(Y 3

1 Y
2

2 ) = E(Y 3
1 )E(Y 2

2 ) = 48× 48 = 2304.

(b) Again, we could appeal to the definition of mathematical expectation and calculate

E

(
Y1

Y2

)
=

∫ ∞
y1=0

∫ ∞
y2=0

y1

y2

1

32
y2

2e
−(y1+y2)/2 dy2dy1

directly. Alternatively, we could write

E

(
Y1

Y2

)
= E(Y1)E

(
1

Y2

)
= 2E

(
1

Y2

)
,

and calculate the first inverse moment E( 1
Y2

) of the gamma(3, 2) distribution. Note that

E

(
1

Y2

)
=

∫ ∞
0

1

y2

1

Γ(3)23
y2

2e
−y2/2dy2 =

1

Γ(3)23

∫ ∞
0

y2e
−y2/2dy2 =

1

Γ(3)23
× Γ(2)22 =

1

4
.

Therefore,

E

(
Y1

Y2

)
=

1

2
. �
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5.8 Covariance, correlation, and the bivariate normal distribution

Recall: When the random variables Y1 and Y2 are independent, the value of one variable
does not influence what the value of the other variable will be. This was illustrated precisely
by examining conditional distributions; e.g.,

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
Y1⊥⊥Y2=

fY1(y1)fY2(y2)

fY2(y2)
= fY1(y1).

In other words, conditioning on the value of Y2 does not influence the distribution of Y1. The
notation Y1 ⊥⊥ Y2 is shorthand for “Y1 and Y2 are independent.”

Note: When Y1 and Y2 are not independent, then

fY1|Y2(y1|y2) 6= fY1(y1)

which suggests that Y1 and Y2 are related in some way. The covariance and correlation are
quantities that describe a certain type of relationship between random variables.

Terminology: Suppose Y1 and Y2 are random variables (discrete or continuous) with means
E(Y1) = µ1 and E(Y2) = µ2, respectively. The covariance of Y1 and Y2 is defined as

Cov(Y1, Y2) = E[(Y1 − µ1)(Y2 − µ2)].

Note that

Cov(Y1, Y2) = E[(Y1 − µ1)(Y2 − µ2)] = E(Y1Y2 − µ1Y2 − µ2Y1 + µ1µ2)

= E(Y1Y2)− µ1E(Y2)− µ2E(Y1) + µ1µ2

= E(Y1Y2)− µ1µ2 − µ1µ2 + µ1µ2

= E(Y1Y2)− µ1µ2

= E(Y1Y2)− E(Y1)E(Y2).

This is called the covariance computing formula.

Interpretation: The covariance is a number that describes the linear relationship between
Y1 and Y2:

• if Cov(Y1, Y2) > 0, then Y1 and Y2 are positively (linearly) related

• if Cov(Y1, Y2) < 0, then Y1 and Y2 are negatively (linearly) related

• if Cov(Y1, Y2) = 0, then Y1 and Y2 are not linearly related.

Remark: Students reading the last bullet might be tempted to infer that

Cov(Y1, Y2) = 0 =⇒ Y1 ⊥⊥ Y2.

Unfortunately, this is not true in general, as illustrated by the following example.
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Example 5.17. Suppose Y1 ∼ U(−1, 1); i.e., the pdf of Y1 is

fY1(y1) =


1

2
, −1 < y1 < 1

0, otherwise,

and let Y2 = Y 2
1 . Therefore, Y1 and Y2 are not independent; in fact, they are perfectly related.

Despite this, we show Cov(Y1, Y2) = 0. Note that E(Y1Y2) = E(Y1Y
2

1 ) = E(Y 3
1 ). The third

moment of Y1 is

E(Y 3
1 ) =

∫ 1

−1

y3
1

1

2
dy1 =

1

2

(
y4

1

4

)∣∣∣∣1
−1

=
1

2

(
1

4
− 1

4

)
= 0.

Clearly, E(Y1) = 0 because fY1(y1) is symmetric about zero. Also,

E(Y2) = E(Y 2
1 ) =

∫ 1

−1

y2
1

1

2
dy1 =

1

2

(
y3

1

3

)∣∣∣∣1
−1

=
1

2

(
1

3
+

1

3

)
=

1

3
.

Therefore, from the covariance computing formula,

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) = 0− 0

(
1

3

)
= 0.

Note: This counterexample shows

Cov(Y1, Y2) = 0 6=⇒ Y1 ⊥⊥ Y2.

The covariance describes linear relationships between two random variables. In Example
5.17, the random variables Y1 and Y2 are related (perfectly); it’s just that the relationship is
not linear. The covariance does not describe nonlinear relationships. �

Important: Although zero covariance does not necessarily imply independence, the converse
is true; i.e.,

Y1 ⊥⊥ Y2 =⇒ Cov(Y1, Y2) = 0.

Proof. If Y1 and Y2 are independent, then E(Y1Y2) = E(Y1)E(Y2). Therefore,

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) = E(Y1)E(Y2)− E(Y1)E(Y2) = 0. �

The contrapositive of this statement (which is also true) is

Cov(Y1, Y2) 6= 0 =⇒ Y1 and Y2 are dependent.

Example 5.18. Gasoline is stocked in a tank at the beginning of each week and then sold
to customers during the week. Define

Y1 = proportion of the tank available for sale after it is stocked

Y2 = proportion sold during the week.
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y1

y 2

0 1/2 1

0
1/
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Figure 5.13: The support R = {(y1, y2) : 0 < y2 < y1 < 1} in Example 5.18.

Suppose the joint pdf for Y1 and Y2 is

fY1,Y2(y1, y2) =

{
3y1, 0 < y2 < y1 < 1

0, otherwise.

Calculate the covariance of Y1 and Y2.

Solution. It is easiest to use the covariance computing formula. First,

E(Y1Y2) =

∫ 1

y1=0

∫ y1

y2=0

y1y2 3y1 dy2dy1 =

∫ 1

y1=0

∫ y1

y2=0

3y2
1y2 dy2dy1 =

3

10
.

To get E(Y1) and E(Y2), we could calculate

E(Y1) =

∫ 1

y1=0

∫ y1

y2=0

y1 3y1 dy2dy1

E(Y2) =

∫ 1

y1=0

∫ y1

y2=0

y2 3y1 dy2dy1

using the joint pdf. Another option is to derive the marginal pdfs of Y1 and Y2 first and then
get E(Y1) and E(Y2) from those. This might seem like an unnecessary step (i.e., deriving the
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marginal pdfs), but in some problems knowing the marginal distributions can make future
calculations easier or even automatic. The marginal pdf of Y1 is nonzero when 0 < y1 < 1.
For these values,

fY1(y1) =

∫ y1

y2=0

3y1dy2 = 3y1

∫ y1

y2=0

dy2 = 3y1

(
y2

∣∣∣y1
y2=0

)
= 3y2

1.

The marginal pdf of Y2 is also nonzero when 0 < y2 < 1. For these values,

fY2(y2) =

∫ 1

y1=y2

3y1dy1 =

(
3y2

1

2

∣∣∣1
y1=y2

)
=

3

2
(1− y2

2).

Summarizing, we have

fY1(y1) =

{
3y2

1, 0 < y1 < 1

0, otherwise

and

fY2(y2) =


3

2
(1− y2

2), 0 < y2 < 1

0, otherwise.

We recognize Y1 ∼ beta(3, 1) so

E(Y1) =
3

3 + 1
=

3

4
.

The pdf of Y2 is not one of a “named distribution,” but we can easily calculate

E(Y2) =

∫ 1

0

y2
3

2
(1− y2

2)dy2 =
3

8
.

Therefore, the covariance of Y1 and Y2 is

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) =
3

10
−
(

3

4

)(
3

8

)
=

3

160
. �

Facts: Suppose Y , Y1, and Y2 are random variables (discrete or continuous). The covariance
operator enjoys the following properties:

1. Cov(Y, a) = 0, for any constant a ∈ R

2. Cov(Y, Y ) = V (Y )

3. Cov(Y1, Y2) = Cov(Y2, Y1)

4. Cov(a1Y1, a2Y2) = a1a2Cov(Y1, Y2), for constants a1, a2 ∈ R.

Terminology: Suppose Y1 and Y2 are random variables (discrete or continuous) with means
E(Y1) = µ1 and E(Y2) = µ2 and variances V (Y1) = σ2

1 and V (Y2) = σ2
2, respectively. The

correlation of Y1 and Y2 is defined as

ρ =
Cov(Y1, Y2)

σ1σ2

.
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Interpretation: The correlation, like the covariance, measures the strength and the direc-
tion of the linear relationship between two random variables Y1 and Y2. However, whereas
the covariance can be any real number, the correlation is restricted to [−1, 1]; that is,

−1 ≤ ρ ≤ 1.

Proof. Define the function

h(t) = E{[(Y1 − µ1)t+ (Y2 − µ2)]2}.

Note first that h(t) ≥ 0 for all t ∈ R. Expanding the square and distributing the expectation,

h(t) = E[(Y1 − µ1)2]t2 + 2E[(Y1 − µ1)(Y2 − µ2)]t+ E[(Y2 − µ2)2]

= σ2
1t

2 + 2Cov(Y1, Y2)t+ σ2
2,

a quadratic function of t. Because nonnegative quadratic functions can have at most one
real root, the discriminant of h(t); i.e., [2Cov(Y1, Y2)]2 − 4σ2

1σ
2
2 ≤ 0. However, note that

[2Cov(Y1, Y2)]2 − 4σ2
1σ

2
2 ≤ 0 ⇐⇒ [Cov(Y1, Y2)]2 ≤ σ2

1σ
2
2

⇐⇒ −σ1σ2 ≤ Cov(Y1, Y2) ≤ σ1σ2.

Dividing through by σ1σ2 gives

−1 ≤ Cov(Y1, Y2)

σ1σ2

≤ 1. �

Note: The correlation ρ is interpreted in the same way as the covariance; i.e.,

• if ρ > 0, then Y1 and Y2 are positively (linearly) related

• if ρ < 0, then Y1 and Y2 are negatively (linearly) related

• if ρ = 0, then Y1 and Y2 are not linearly related.

In addition,
Y1 ⊥⊥ Y2 =⇒ ρ = 0

but the relationship does not go the other way. The correlation ρ does not describe nonlinear
relationships between Y1 and Y2. Finally, because −1 ≤ ρ ≤ 1, we have the following
interpretations at the extremes:

• if ρ = +1, the bivariate distribution of Y1 and Y2 falls entirely on a straight line with
positive slope

• if ρ = −1, the bivariate distribution of Y1 and Y2 falls entirely on a straight line with
negative slope.

In both cases, there is a perfect linear relationship between Y1 and Y2.
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Example 5.18 (continued). We now calculate the correlation ρ for the random variables

Y1 = proportion of the tank available for sale after it is stocked

Y2 = proportion sold during the week

in Example 5.18. We already calculated Cov(Y1, Y2) = 3
160

, so all we need to do is calculate
the marginal standard deviations. Recall that

fY1(y1) =

{
3y2

1, 0 < y1 < 1

0, otherwise

and

fY2(y2) =


3

2
(1− y2

2), 0 < y2 < 1

0, otherwise.

Recall that Y1 ∼ beta(3, 1) so

V (Y1) =
3(1)

(3 + 1)2(3 + 1 + 1)
=

3

80
=⇒ σ1 =

√
3

80
.

The second moment of Y2 is

E(Y 2
2 ) =

∫ 1

0

y2
2

3

2
(1− y2

2)dy2 =
1

5
.

Therefore,

V (Y2) = E(Y 2
2 )− [E(Y2)]2 =

1

5
−
(

3

8

)2

=
19

320
=⇒ σ2 =

√
19

320
.

Finally, the correlation of Y1 and Y2 is

ρ =
Cov(Y1, Y2)

σ1σ2

=
3

160√
3
80

√
19
320

≈ 0.397. �

Bivariate Normal Distribution
Terminology: The random vector (X, Y ) is said to have a bivariate normal distribution
if the joint pdf of X and Y is given by

fX,Y (x, y) =


1

2πσXσY
√

1− ρ2
e−Q/2, (x, y) ∈ R2

0, otherwise,

where

Q =
1

1− ρ2

[(
x− µX
σX

)2

− 2ρ

(
x− µX
σX

)(
y − µY
σY

)
+

(
y − µY
σY

)2
]
.
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Figure 5.14: Level curves of the bivariate normal pdf with µX = µY = 0 and σ2

X = σ2
Y = 1.

Left: ρ = 0.5. Right: ρ = −0.5.

Note that there are 5 parameters that index the bivariate normal distribution:

E(X) = µX E(Y ) = µY

V (X) = σ2
X V (Y ) = σ2

Y

and ρ, the correlation of X and Y .

Facts: Suppose X and Y have a bivariate normal distribution.

1. Marginal distributions are normal; i.e., X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ). In other

words, both X and Y have (univariate) normal distributions. To establish this, it
would suffice to show

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy =
1√

2πσX
e
− 1

2

(
x−µX
σX

)2

,

for −∞ < x < ∞, and analogously for fY (y). Therefore, bivariate normality implies
univariate normality. This relationship does not go the other way.

2. In general, we learned that
X ⊥⊥ Y =⇒ ρ = 0.

However, in the bivariate normal distribution, this relationship goes both ways; i.e.,

X ⊥⊥ Y ⇐⇒ ρ = 0.

This is true because fX,Y (x, y) = fX(x)fY (y) if and only if ρ = 0.
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Figure 5.15: Level curves of the bivariate normal pdf with µX = µY = 0, σ2
X = σ2

Y = 1, and
correlation ρ = 0; i.e., X and Y are independent.

3. Conditional distributions are also normal. For example,

Y |X = x ∼ N (β0 + β1x, σ
2
Y (1− ρ2)),

where

β0 = µY − β1µX

β1 = ρ

(
σY
σX

)
.

This result forms the theoretical basis for simple linear regression, which is a com-
mon statistical technique. Note that the mean of this conditional distribution

E(Y |X = x) = β0 + β1x

is a linear function of x and the variance of this conditional distribution

V (Y |X = x) = σ2
Y (1− ρ2)

is free of x; i.e., the (conditional) variance of Y does not depend on the value of X.
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Example 5.19. A fire in an apartment building results in a loss, X, to the owner and a
loss, Y , to the tenants. The random variables X and Y have a bivariate normal distribution
with

E(X) = 40 E(Y ) = 30

V (X) = 76 V (Y ) = 32

and V (X|Y = 28.5) = 57. Find V (Y |X = 25).

Solution. The conditional variance formula

V (X|Y = y) = σ2
X(1− ρ2)

applies regardless of what the value of Y is. Therefore, we have

57 = 76(1− ρ2) =⇒ 1− ρ2 =
57

76
.

Similarly, the conditional variance formula

V (Y |X = x) = σ2
Y (1− ρ2)

applies regardless of what the value of X is. Therefore,

V (Y |X = 25) = 32

(
57

76

)
= 24. �

Remark: With the information given in Example 5.19, we know that

1− ρ2 =
57

76
=⇒ ρ2 =

19

76
= 0.25 =⇒ ρ = ±0.5.

Unfortunately, we cannot discern whether ρ = 0.5 or ρ = −0.5 unless we were provided
with either of the conditional means E(X|Y = y) or E(Y |X = x). Intuition should suggest
that ρ > 0 because X and Y are losses incurred by the owner and the tenants, respectively.
Figure 5.16 (next page) displays the level curves of the bivariate normal pdf in Example 5.19
when ρ = +0.5.

5.9 Means, variances, and covariances of linear combinations

Terminology: Suppose Y1 and Y2 are random variables (discrete or continuous). Suppose
a1, a2 ∈ R are constants. The random variable

U = a1Y1 + a2Y2

is called a linear combination of Y1 and Y2. The mean of U is

E(U) = E(a1Y1 + a2Y2) = a1E(Y1) + a2E(Y2).

The variance of U is

V (U) = V (a1Y1 + a2Y2) = a2
1V (Y1) + a2

2V (Y2) + 2a1a2Cov(Y1, Y2).
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Figure 5.16: Level curves of the bivariate normal pdf in Example 5.19 with µX = 40 and
µY = 30, σ2

X = 76 and σ2
Y = 32, and correlation ρ = +0.5. A solid circle is placed at the

vector of means.

Note: The following are common special cases of the variance result on the last page:

• a1 = a2 = 1:
V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2)

• a1 = 1, a2 = −1:

V (Y1 − Y2) = V (Y1) + V (Y2)− 2Cov(Y1, Y2)

• Y1 ⊥⊥ Y2, a1 = 1, a2 = ±1:

V (Y1 ± Y2) = V (Y1) + V (Y2).

Remark: That
E(a1Y1 + a2Y2) = a1E(Y1) + a2E(Y2)

follows from the linearity properties of expectation. Showing

V (a1Y1 + a2Y2) = a2
1V (Y1) + a2

2V (Y2) + 2a1a2Cov(Y1, Y2)
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is done as follows. Define U = a1Y1 + a2Y2. The variance of U is V (U) = E(U2)− [E(U)]2.
Note that

U2 = (a1Y1 + a2Y2)2 = a2
1Y

2
1 + 2a1a2Y1Y2 + a2

2Y
2

2 .

Therefore,
E(U2) = a2

1E(Y 2
1 ) + 2a1a2E(Y1Y2) + a2

2E(Y 2
2 ).

Now,

[E(U)]2 = [a1E(Y1) + a2E(Y2)]2

= a2
1[E(Y1)]2 + 2a1a2E(Y1)E(Y2) + a2

2[E(Y2)]2.

Therefore,

V (U) = E(U2)− [E(U)]2 = a2
1E(Y 2

1 )− a2
1[E(Y1)]2︸ ︷︷ ︸ + a2

2E(Y 2
2 )− a2

2[E(Y2)]2︸ ︷︷ ︸
+ 2a1a2E(Y1Y2)− 2a1a2E(Y1)E(Y2)︸ ︷︷ ︸

= a2
1V (Y1) + a2

2V (Y2) + 2a1a2Cov(Y1, Y2). �

Example 5.20. In Example 5.18, we considered the random variables

Y1 = proportion of the tank available for sale after it is stocked

Y2 = proportion sold during the week

whose joint pdf was given by

fY1,Y2(y1, y2) =

{
3y1, 0 < y2 < y1 < 1

0, otherwise.

The quantity U = Y1 − Y2 represents the proportion of the tank occupied by gasoline after
the week (i.e., the amount of gasoline not sold). Find E(Y1 − Y2) and V (Y1 − Y2).

Solution. We have already calculated

E(Y1) =
3

4
E(Y2) =

3

8

V (Y1) =
3

80
V (Y2) =

19

320

and Cov(Y1, Y2) = 3
160

. Therefore,

E(Y1 − Y2) = E(Y1)− E(Y2) =
3

4
− 3

8
=

3

8

and

V (Y1 − Y2) = V (Y1) + V (Y2)− 2Cov(Y1, Y2) =
3

80
+

19

320
− 2

(
3

160

)
=

19

320
. �
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Generalization: We now describe the mean and variance for a linear combination of n
random variables Y1, Y2, ..., Yn. These are natural extensions of the n = 2 case. Suppose
Y1, Y2, ..., Yn are random variables (discrete or continuous). Suppose a1, a2, ..., an ∈ R are
constants. The random variable

U =
n∑
i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn

is a linear combination of Y1, Y2, ..., Yn. The mean of U is

E(U) = E(a1Y1 + a2Y2 + · · ·+ anYn) = a1E(Y1) + a2E(Y2) + · · ·+ anE(Yn),

that is,

E

(
n∑
i=1

aiYi

)
=

n∑
i=1

aiE(Yi).

The variance of U is

V (U) = V

(
n∑
i=1

aiYi

)
= V (a1Y1 + a2Y2 + · · ·+ anYn)

=
n∑
i=1

a2
iV (Yi) +

∑∑
i 6=j

aiajCov(Yi, Yj).

Note: Because Cov(Yi, Yj) = Cov(Yj, Yi), the variance formula is sometimes written as

V

(
n∑
i=1

aiYi

)
=

n∑
i=1

a2
iV (Yi) + 2

∑∑
i<j

aiajCov(Yi, Yj).

The proofs of these results are analogous to the n = 2 case.

Result: Suppose Y1, Y2, ..., Yn and X1, X2, ..., Xm are two sets of random variables. In some
problems, it will be necessary to calculate the covariance of two linear combinations, say,

U1 =
n∑
i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn

U2 =
m∑
j=1

bjXj = b1X1 + b2X2 + · · ·+ bmXm.

This is done as follows:

Cov(U1, U2) = Cov

(
n∑
i=1

aiYi,
m∑
j=1

bjXj

)
=

n∑
i=1

m∑
j=1

aibjCov(Yi, Xj).

Note the linear combinations do not have to be of the same length. In many problems, the
Yi’s and the Xj’s are the same set of random variables.
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Example 5.21. Suppose that Y1, Y2, and Y3 are random variables with

E(Y1) = 1 E(Y2) = 2 E(Y3) = 3
V (Y1) = 1 V (Y2) = 4 V (Y3) = 9

Cov(Y1, Y2) = 0 Cov(Y1, Y3) = 1 Cov(Y2, Y3) = −1.

(a) Find the mean and variance of U = Y1 − 2Y2 + 4Y3.
(b) Find Cov(Y1 + 2Y2 − Y3, Y2 − 5Y1).

Solutions. (a) Note that U is a linear combination with a1 = 1, a2 = −2, and a3 = 4. The
mean is

E(Y1 − 2Y2 + 4Y3) = E(Y1)− 2E(Y2) + 4E(Y3) = 1− 2(2) + 4(3) = 9.

The variance is

V (Y1 − 2Y2 + 4Y3) = 12V (Y1) + (−2)2V (Y2) + 42V (Y3)

+ 2(1)(−2)Cov(Y1, Y2) + 2(1)(4)Cov(Y1, Y3) + 2(−2)(4)Cov(Y2, Y3)

= 1(1) + 4(4) + 16(9)− 4(0) + 8(1)− 16(−1) = 185.

(b) Using the covariance result on the last page, we have

Cov(Y1 + 2Y2 − Y3, Y2 − 5Y1) = Cov(Y1, Y2) + Cov(Y1,−5Y1) + Cov(2Y2, Y2) + Cov(2Y2,−5Y1)

+ Cov(−Y3, Y2) + Cov(−Y3,−5Y1)

= Cov(Y1, Y2)− 5Cov(Y1, Y1) + 2Cov(Y2, Y2)− 10Cov(Y2, Y1)

− Cov(Y3, Y2) + 5Cov(Y3, Y1)

= 0− 5V (Y1) + 2V (Y2)− 10(0)− (−1) + 5(1) = 9. �

Example 5.22. Suppose Y1, Y2, ..., Yn are mutually independent random variables, each
with mean E(Yi) = µ and variance V (Yi) = σ2. Define

Y =
1

n

n∑
i=1

Yi,

the arithmetic average of Y1, Y2, ..., Yn. In a statistical setting, Y is called the sample mean
of Y1, Y2, ..., Yn. Recognizing that

∑n
i=1 Yi is simply a linear combination of Y1, Y2, ..., Yn with

a1 = a2 = · · · = an = 1,

find E(Y ) and V (Y ).

Solution. The mean of Y is

E(Y ) = E

(
1

n

n∑
i=1

Yi

)
=

1

n
E

(
n∑
i=1

Yi

)
=

1

n

n∑
i=1

E(Yi) =
1

n

n∑
i=1

µ =
nµ

n
= µ.
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Because Y1, Y2, ..., Yn are mutually independent, Cov(Yi, Yj) = 0 whenever i 6= j. Therefore,
the variance of Y is

V (Y ) = V

(
1

n

n∑
i=1

Yi

)
=

1

n2
V

(
n∑
i=1

Yi

)
=

1

n2

[
n∑
i=1

V (Yi) + 2
∑∑

i<j

Cov(Yi, Yj)

]

=
1

n2

n∑
i=1

V (Yi) =
1

n2

n∑
i=1

σ2 =
nσ2

n2
=
σ2

n
. �

Multinomial Distribution
Experiment: Perform n mutually independent trials. Each trial results in one of k distinct
category outcomes:

Probability Count
−→ Category 1 p1 Y1

−→ Category 2 p2 Y2

Trial outcome −→ Category 3 p3 Y3
...

...
...

−→ Category k pk Yk

The probabilities p1, p2, ..., pk do not change from trial to trial and
∑k

j=1 pj = 1. Define

Yj = number of outcomes in Category j (out of n trials),

for j = 1, 2, ..., k. We call Y = (Y1, Y2, ..., Yk) a multinomial random vector. The joint
probability mass function (pmf) of Y1, Y2, ..., Yk is

pY(y1, y2, ..., yk) =
n!

y1!y2! · · · yk!
py11 p

y2
2 · · · p

yk
k

with the support R = {(y1, y2, ..., yk) : yj = 0, 1, 2, ..., n;
∑k

j=1 yj = n}. We write Y ∼
mult(n,p;

∑k
j=1 pj = 1). The parameter p = (p1, p2, ..., pk) is k-dimensional. However,

because
∑k

j=1 pi = 1, only k − 1 of these parameters are “free to vary.”

Remark: The multinomial distribution is obviously an extension of the binomial distribu-
tion to allow for more than 2 categories. Recall that in the binomial distribution, there were
only 2 categories: “success” and “failure;” i.e.,

Probability Count
Trial outcome −→ Category 1 (“success”) p Y

−→ Category 2 (“failure”) 1− p n− Y

We write Y ∼ b(n, p). Because Y + (n− Y ) = n and p+ (1− p) = 1, it suffices to consider
only the “success category.”
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Example 5.23. The State Hygienic Laboratory at the University of Iowa tests thousands of
Iowa residents each year for chlamydia (CT) and gonorrhea (NG). On a given day, suppose
the lab receives n = 100 specimens to be tested. Define

Category 1: CT−/NG− (p1 = 0.90)

Category 2: CT+/NG− (p2 = 0.07)

Category 3: CT−/NG+ (p3 = 0.02)

Category 4: CT+/NG+ (p4 = 0.01)

and let Y = (Y1, Y2, Y3, Y4) denote the category counts observed after testing. Envisioning
each specimen as a “trial,” regarding the specimens as mutually independent, and assuming
the category probabilities in p = (p1, p2, p3, p4) are the same for each specimen, then

Y ∼ mult

(
n = 100,p;

4∑
j=1

pj = 1

)
.

The pmf of Y = (Y1, Y2, Y3, Y4), where nonzero, is given by

pY(y1, y2, y3, y4) =
100!

y1!y2!y3!y4!
(0.90)y1(0.07)y2(0.02)y3(0.01)y4 .

For example,

pY(88, 10, 1, 1) = P (Y1 = 88, Y2 = 10, Y3 = 1, Y4 = 1)

=
100!

88! 10! 1! 1!
(0.90)88(0.07)10(0.02)1(0.01)1 ≈ 0.017. �

Result: If Y ∼ mult(n,p;
∑k

j=1 pj = 1), then Yj ∼ b(n, pj), j = 1, 2, ..., k. That is, the
category counts Y1, Y2, ..., Yk have marginal binomial distributions, so

E(Yj) = npj

V (Yj) = npj(1− pj),

for j = 1, 2, ..., k. The covariance between any two category counts Yj and Yj′ , j 6= j′, is

Cov(Yj, Yj′) = −npjpj′ .

Proof. Let Yj denote the count for Category j (i.e., “success”) and collapse all other categories
into “not Category j” (i.e., “failure”). Therefore, Yj counts the number of “successes” in n
Bernoulli trials. Note that we can write

Yj =
n∑
i=1

Yij,

where the random variable

Yij =

{
1, individual i in category j

0, otherwise.
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Therefore, the mean of Yj is

E(Yj) = E

(
n∑
i=1

Yij

)
=

n∑
i=1

E(Yij).

Because Yij is a discrete random variable (with 2 outcomes “1” and “0”), its mean is

E(Yij) = 1× P (individual i in category j)︸ ︷︷ ︸
= pj

+ 0× P (individual i not in category j)︸ ︷︷ ︸
= 1−pj

= pj.

Therefore,

E(Yj) =
n∑
i=1

pj = npj.

The variance of Yj is

V (Yj) = V

(
n∑
i=1

Yij

)
=

n∑
i=1

V (Yij) +
n∑
i=1

n∑
i′=1

i 6=i′

Cov(Yij, Yi′j)

︸ ︷︷ ︸
= 0

=
n∑
i=1

V (Yij),

because all of the covariances are 0 (i.e., Yij and Yi′j correspond to different trials so they
are independent). We can calculate V (Yij) using the variance computing formula; i.e.,

V (Yij) = E(Y 2
ij)− [E(Yij)]

2 = E(Y 2
ij)− p2

j .

The second moment of Yij is

E(Y 2
ij) = 12 × P (individual i in category j)︸ ︷︷ ︸

= pj

+ 02 × P (individual i not in category j)︸ ︷︷ ︸
= 1−pj

= pj.

Therefore, V (Yij) = E(Y 2
ij)− p2

j = pj − p2
j = pj(1− pj) and

V (Yj) =
n∑
i=1

pj(1− pj) = npj(1− pj).

Finally,

Cov(Yj, Yj′) = Cov

(
n∑
i=1

Yij,
n∑
i=1

Yij′

)
=

n∑
i=1

Cov(Yij, Yij′).

Using the covariance computing formula, we have

Cov(Yij, Yij′) = E(YijYij′)︸ ︷︷ ︸
= 0

−E(Yij)E(Yij′) = −pjpj′ .

Therefore,

Cov(Yj, Yj′) =
n∑
i=1

−pjpj′ = −npjpj′ . �
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Example 5.23 (continued). In Example 5.23, the lab receives n = 100 specimens which
will be tested and then classified into one of four categories. The random variable

Y1 = the number of CT−/NG− specimens (Category 1)

follows a binomial distribution with n = 100 and p1 = 0.90. In addition, with

Y4 = the number of CT+/NG+ specimens (Category 4),

the covariance of Y1 and Y4 is

Cov(Y1, Y4) = −np1p4 = −100(0.90)(0.01) = −0.9.

It makes sense that Y1 and Y4 have a negative (linear) relationship. As the number of disease-
free specimens increases, the number of specimens with both diseases tends to decrease.

Q: How would we calculate the correlation of Y1 and Y4?
A: Use the definition of correlation:

ρY1,Y4 =
Cov(Y1, Y4)√
V (Y1)V (Y4)

We have already calculated Cov(Y1, Y4) = −0.9. The variance of Y1 is

V (Y1) = np1(1− p1) = 100(0.90)(0.10) = 9;

i.e., the variance of a binomial random variable. Similarly,

V (Y4) = np4(1− p4) = 100(0.01)(0.99) = 0.99.

Therefore,

ρY1,Y4 =
−0.9√

9× 0.99
≈ −0.302. �

5.10 Conditional expectations

Recall: Suppose Y1 and Y2 are random variables. When Y1 and Y2 are discrete, the condi-
tional pmf of Y1, given Y2 = y2, is

pY1|Y2(y1|y2) =
pY1,Y2(y1, y2)

pY2(y2)
,

whenever pY2(y2) > 0. When Y1 and Y2 are continuous, the conditional pdf of Y1, given
Y2 = y2, is

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
,

whenever fY2(y2) > 0. Recall that conditional distributions describe how one variable be-
haves (here, Y1) when the other variable is fixed (here, Y2). Of course, pY2|Y1(y2|y1) and
fY2|Y1(y2|y1) are defined analogously.
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Terminology: Suppose Y1 and Y2 are continuous random variables with joint pdf fY1,Y2(y1, y2).
We define conditional expectations as follows:

E[g(Y1)|Y2 = y2] =

∫
R
g(y1)fY1|Y2(y1|y2)dy1

E[h(Y2)|Y1 = y1] =

∫
R
h(y2)fY2|Y1(y2|y1)dy2.

Notes:

1. If Y1 and Y2 are discrete, then pdfs are replaced by pmfs and integrals by sums.

2. The same existence issues still remain; for example, for E[g(Y1)|Y2 = y2] to exist, we
need

∫
R |g(y1)|fY1|Y2(y1|y2)dy1 <∞.

Special case: If g(Y1) = Y1 and h(Y2) = Y2, then

E(Y1|Y2 = y2) =

∫
R
y1fY1|Y2(y1|y2)dy1

E(Y2|Y1 = y1) =

∫
R
y2fY2|Y1(y2|y1)dy2.

These are called conditional means. For example, E(Y1|Y2 = y2) is the mean of Y1 when
Y2 = y2. Similarly, E(Y2|Y1 = y1) is the mean of Y2 when Y1 = y1. It is insightful to compare
these formulas to the marginal means; i.e.,

E(Y1) =

∫
R
y1fY1(y1)dy1

E(Y2) =

∫
R
y2fY2(y2)dy2,

where fY1(y1) and fY2(y2) are the marginal pdfs. If Y1 and Y2 are discrete, then pdfs are
replaced by pmfs and integrals by sums.

Important: Conditional expectations are always functions of the variable on which you are
conditioning. Furthermore, the use of notation for the conditioning variable is important in
describing whether a conditional expectation is a fixed quantity or a random variable.

E(Y1|Y2 = y2) ←− function of y2; fixed quantity

E(Y1|Y2) ←− function of Y2; random variable

E(Y2|Y1 = y1) ←− function of y1; fixed quantity

E(Y2|Y1) ←− function of Y1; random variable

Note: Computing formulas for conditional variances are analogous to the unconditional
versions:

V (Y1|Y2 = y2) = E(Y 2
1 |Y2 = y2)− [E(Y1|Y2 = y2)]2

V (Y2|Y1 = y1) = E(Y 2
2 |Y1 = y1)− [E(Y2|Y1 = y1)]2.

PAGE 162



STAT 511: CHAPTER 5 JOSHUA M. TEBBS

Example 5.24. In Example 5.1 (notes), we examined the joint distribution of

Y1 = the number of tornados recorded each year in Lee County

Y2 = the number of tornados recorded each year in Van Buren County.

The joint pmf of Y1 and Y2, pY1,Y2(y1, y2), was described in the table

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 pY1(y1)
y1 = 0 0.64 0.08 0.04 0.76
y1 = 1 0.12 0.06 0.02 0.20
y1 = 2 0.02 0.01 0.01 0.04
pY2(y2) 0.78 0.15 0.07

The marginal pmfs pY1(y1) and pY2(y2) are in the margins of this table. We derived the
conditional pmf of Y1 given Y2 = 0, shown in the following table:

y1 0 1 2
pY1|Y2(y1|y2 = 0) 0.820 0.154 0.026

(a) Calculate the conditional mean E(Y1|Y2 = 0).
(b) Calculate the conditional variance V (Y1|Y2 = 0).

Solutions. (a) The conditional mean E(Y1|Y2 = 0) is a weighted average of the three possible
values of Y1 where the conditional probabilities pY1|Y2(y1|y2 = 0) play the role of the weights;
i.e.,

E(Y1|Y2 = 0) =
2∑

y1=0

y1pY1|Y2(y1|y2 = 0) = 0(0.820) + 1(0.154) + 2(0.026) = 0.206.

(b) To find V (Y1|Y2 = 0), we can use the variance computing formula (for conditional
variances); i.e.,

V (Y1|Y2 = 0) = E(Y 2
1 |Y2 = 0)− [E(Y1|Y2 = 0)]2.

The conditional second moment is

E(Y 2
1 |Y2 = 0) =

2∑
y1=0

y2
1pY1|Y2(y1|y2 = 0) = 02(0.820) + 12(0.154) + 22(0.026) = 0.258.

Therefore,
V (Y1|Y2 = 0) = 0.258− (0.206)2 ≈ 0.216. �

Example 5.25. In Example 5.6, we considered continuous random variables Y1 and Y2 with
joint pdf

fY1,Y2(y1, y2) =

{
e−y2 , 0 < y1 < y2 <∞

0, otherwise.
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We derived the conditional pdfs to be

fY1|Y2(y1|y2) =


1

y2

, 0 < y1 < y2

0, otherwise

and

fY2|Y1(y2|y1) =

{
e−(y2−y1), y2 > y1

0, otherwise.

Find the conditional means; i.e., calculate E(Y1|Y2 = y2) and E(Y2|Y1 = y1).

Solutions. The conditional mean of Y1 is

E(Y1|Y2 = y2) =

∫
R
y1fY1|Y2(y1|y2)dy1 =

∫ y2

0

y1
1

y2

dy1 =
1

y2

(
y2

1

2

∣∣∣∣y2
0

)
=
y2

2
.

This makes sense. Note that Y1|Y2 = y2 ∼ U(0, y2); i.e., conditional on Y2 = y2, the random
variable Y1 is uniformly distributed from 0 to y2. The conditional mean E(Y1|Y2 = y2) = y2/2
is the midpoint. The conditional mean of Y2 is

E(Y2|Y1 = y1) =

∫
R
y2fY2|Y1(y2|y1)dy2 =

∫ ∞
y1

y2 e
−(y2−y1)dy2

u=y2−y1
=

∫ ∞
0

(u+ y1)e−udu = E(U + y1),

where U ∼ exponential(1); in the last integral, note that e−u is the pdf of U ∼ exponential(1)
and we are integrating over (0,∞). Therefore,

E(Y2|Y1 = y1) = E(U + y1) = E(U) + y1 = 1 + y1.

This also makes sense. The conditional pdf of Y2 is that of a “shifted” exponential(1) pdf,
where the fixed value of y1 denotes the shift. The conditional mean E(Y2|Y1 = y1) is 1 plus
the shift. �

Exercise: Show the conditional variances are V (Y1|Y2 = y2) = y2
2/12 and V (Y2|Y1 = y1) = 1.

Remark: In Example 5.25, we derived the conditional means

E(Y1|Y2 = y2) =
y2

2
E(Y2|Y1 = y1) = 1 + y1.

These are fixed quantities; i.e., when we condition on a fixed value of y2 (y1), a conditional
mean is a function of this fixed value. The random versions of these are

E(Y1|Y2) =
Y2

2
E(Y2|Y1) = 1 + Y1.

These are functions of random variables; therefore, these are random variables themselves.
As such, they have their own means, their own variances, in fact, they have their own
distributions!
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Result: Suppose Y1 and Y2 are random variables (discrete or continuous). Then

E(Y1) = E[E(Y1|Y2)],

provided that all expectations exist. Similarly,

E(Y2) = E[E(Y2|Y1)].

This is called the law of iterated expectation.

Remark: With so many expectations floating around, it is important to keep track of which
distributions are being used. For example, for

E(Y1) = E[E(Y1|Y2)],

there are three expectations:

E(Y1) −→ refers to the marginal distribution of Y1

E(Y1|Y2) −→ refers to the conditional distribution of Y1 given Y2

E[E(Y1|Y2)] −→ calculated using the marginal distribution of Y2.

Remember that, in general, E(Y1|Y2) is a function of Y2.

Proof. We prove E(Y1) = E[E(Y1|Y2)] in the continuous case. Showing E(Y2) = E[E(Y2|Y1)]
is done in the same way. Suppose Y1 and Y2 are continuous with joint pdf fY1,Y2(y1, y2) and
marginal pdfs fY1(y1) and fY2(y2), respectively. Note that

E(Y1) =

∫ ∫
R2

y1fY1,Y2(y1, y2)dy1dy2

=

∫
R

∫
R
y1fY1|Y2(y1|y2)fY2(y2)dy1dy2

=

∫
R

[∫
R
y1fY1|Y2(y1|y2)dy1

]
︸ ︷︷ ︸

E(Y1|Y2=y2)

fY2(y2)dy2

=

∫
R
E(Y1|Y2 = y2)fY2(y2)dy2 = E[E(Y1|Y2)].

The discrete case is proven analogously by replacing pdfs with pmfs and replacing integrals
with sums. �

Example 5.26. An automobile repair shop makes an initial estimate Y1 (in $1000s) needed
to fix a car after an accident. The probability density function (pdf) of Y1 is

fY1(y1) =


1

3
e−(y1−0.5)/3, y1 > 0.5

0, otherwise.

Conditional on the estimate Y1 = y1, the final payment by the car owner Y2 (in $1000s) has
a uniform distribution from y1 − 0.2 and y1 + 0.3. Find E(Y2), the mean final payment by
the car owner.
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Figure 5.17: Probability density functions in Example 5.26. Left: The marginal pdf fY1(y1).
Right: The conditional pdf fY2|Y1(y2|y1).

Solution. The marginal pdf fY1(y1) is shown in Figure 5.17 above (left). We also know the
conditional pdf

fY2|Y1(y2|y1) =

{
2, y1 − 0.2 < y2 < y1 + 0.3

0, otherwise,

which is shown in Figure 5.17 above (right). We want to find E(Y2).

Hard way: We could first derive fY2(y2), the marginal pdf of Y2, and then calculate E(Y2)
as usual via

E(Y2) =

∫
R
y2fY2(y2)dy2.

This is straightforward conceptually, but performing this calculation is hard. Note that the
joint pdf of Y1 and Y2, where nonzero, is

fY1,Y2(y1, y2) = fY2|Y1(y2|y1)fY1(y1) =
2

3
e−(y1−0.5)/3.

That is,

fY1,Y2(y1, y2) =


2

3
e−(y1−0.5)/3,

y1 > 0.5
y1 − 0.2 < y2 < y1 + 0.3

0, otherwise.

The bivariate support of Y1 and Y2,

R = {(y1, y2) : y1 > 0.5, y1 − 0.2 < y2 < y1 + 0.3},

is shown in Figure 5.18 (see next page).
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Figure 5.18: The bivariate support R = {(y1, y2) : y1 > 0.5, y1 − 0.2 < y2 < y1 + 0.3} in
Example 5.26. The lower line is y2 = y1 − 0.2. The upper line is y2 = y1 + 0.3.

Note: The marginal pdf

fY2(y2) =

∫
R
fY1,Y2(y1, y2)dy1

assumes different values, depending on the value of y2.

Case 1: 0.3 < y2 < 0.8.

fY2(y2) =

∫ y2+0.2

y1=0.5

2

3
e−(y1−0.5)/3dy1 = 2

[
1− e−(y2−0.3)/3

]
.

Case 2: y2 > 0.8.

fY2(y2) =

∫ y2+0.2

y1=y2−0.3

2

3
e−(y1−0.5)/3dy1 = 2

[
e−(y2−0.8)/3 − e−(y2−0.3)/3

]
.

Summarizing,

fY2(y2) =


2
[
1− e−(y2−0.3)/3

]
, 0.3 < y2 < 0.8

2
[
e−(y2−0.8)/3 − e−(y2−0.3)/3

]
, y2 > 0.8

0, otherwise.
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Therefore, to find E(Y2), we would be left to calculate

E(Y2) =

∫ 0.8

y2=0.3

2y2

[
1− e−(y2−0.3)/3

]
dy2 +

∫ ∞
y2=0.8

2y2

[
e−(y2−0.8)/3 − e−(y2−0.3)/3

]
dy2.

Although it is possible to do both of these integrals analytically (it would not be friendly),
I used R to calculate both integrals numerically and got E(Y2) = 3.55.

Easy way: Use the law of iterated expectation. Write E(Y2) = E[E(Y2|Y1)]. We know that
Y2|Y1 = y1 ∼ U(y1 − 0.2, y1 + 0.3). Therefore,

E(Y2|Y1 = y1) = y1 + 0.05,

the midpoint of y1 − 0.2 and y1 + 0.3. Therefore,

E(Y2) = E[E(Y2|Y1)] = E(Y1 + 0.05) = E(Y1) + 0.05.

The marginal mean of Y1 is easy to calculate; i.e.,

E(Y1) =

∫
R
y1fY1(y1)dy1 =

∫ ∞
0.5

y1
1

3
e−(y1−0.5)/3dy1.

Let u = y1 − 0.5 =⇒ du = dy1. Therefore,

E(Y1) =

∫ ∞
0.5

y1
1

3
e−(y1−0.5)/3dy1 =

∫ ∞
0

(u+ 0.5)
1

3
e−u/3du = E(U + 0.5) = E(U) + 0.5,

where U ∼ exponential(3). Therefore,

E(Y1) = 3 + 0.5 = 3.5 =⇒ E(Y2) = 3.5 + 0.05 = 3.55.

The mean final payment by the car owner is $3,550. �

Morale: This example illustrates an important lesson when finding expected values. In
some problems, it is difficult to calculate E(Y1) or E(Y2) directly. Using the law of iterated
expectation can make calculations much easier.

Adam’s Rule: Suppose Y1 and Y2 are random variables (discrete or continuous). Then

V (Y1) = E[V (Y1|Y2)] + V [E(Y1|Y2)],

provided that all expectations and variances exist. Similarly,

V (Y2) = E[V (Y2|Y1)] + V [E(Y2|Y1)].

This is also called the law of iterated variances.

Proof. We prove V (Y1) = E[V (Y1|Y2)] + V [E(Y1|Y2)]. First, note that

E[V (Y1|Y2)] = E{E(Y 2
1 |Y2)− [E(Y1|Y2)]2}

= E[E(Y 2
1 |Y2)]− E{[E(Y1|Y2)]2} = E(Y 2

1 )− E{[E(Y1|Y2)]2}.
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Second, note that

V [E(Y1|Y2)] = E{[E(Y1|Y2)]2} − {E[E(Y1|Y2)]}2

= E{[E(Y1|Y2)]2} − [E(Y1)]2.

Combining these two equations yields

E[V (Y1|Y2)] + V [E(Y1|Y2)] = E(Y 2
1 )− E{[E(Y1|Y2)]2}+ E{[E(Y1|Y2)]2} − [E(Y1)]2

= E(Y 2
1 )− [E(Y1)]2 = V (Y1). �

Remark: Adam’s Rule is helpful. In the same way we realized great simplification when
using the law of iterated expectation; e.g.,

E(Y1) = E[E(Y1|Y2)],

calculating marginal variances can also be done more easily by incorporating information on
conditional distributions (through their means and variances).

Example 5.26 (continued). In Example 5.26, find V (Y2), the variance of the final payment
by the car owner.

Solution. Doing things the hard way would require us to first calculate

E(Y 2
2 ) =

∫ 0.8

y2=0.3

2y2
2

[
1− e−(y2−0.3)/3

]
dy2 +

∫ ∞
y2=0.8

2y2
2

[
e−(y2−0.8)/3 − e−(y2−0.3)/3

]
dy2

and then use the variance computing formula V (Y2) = E(Y 2
2 )− [E(Y2)]2 = E(Y 2

2 )− (3.55)2.
The easy way is to write

V (Y2) = E[V (Y2|Y1)] + V [E(Y2|Y1)].

Because Y2|Y1 = y1 ∼ U(y1 − 0.2, y1 + 0.3), we have

E(Y2|Y1 = y1) = y1 + 0.05

as before and

V (Y2|Y1 = y1) =
[(y1 + 0.3)− (y1 − 0.2)]2

12
=

1

48
.

Therefore,

V (Y2) = E

(
1

48

)
+ V (Y1 + 0.5) =

1

48
+ V (Y1) =

1

48
+ 9 ≈ 9.021.

Note that the marginal pdf of Y1,

fY1(y1) =


1

3
e−(y1−0.5)/3, y1 > 0.5

0, otherwise,

is a shifted exponential(3) distribution (with shift 0.5). Because the location shift does not
affect the variance of the distribution, V (Y1) = 32 = 9. �
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Example 5.27. A clinical trial is performed to assess the drug enzalutamide in treating
women with advanced breast cancer. Suppose n patients are recruited and we record

Y = number of patients who respond to the drug.

Instead of assuming the probability of response P is the same for each patient (which would
admit a binomial distribution for Y ), suppose P is potentially different for each patient. In
this case, P may be best regarded as random itself and having its own distribution. Suppose
we assume

Y |P ∼ binomial(n, P )

P ∼ beta(α, β).

This is an example of a hierarchical model. The mean of Y can be computed using the
law of iterated expectation:

E(Y ) = E[E(Y |P )] = E(nP ) = nE(P ) = n

(
α

α + β

)
.

The variance of Y can be computed using the law of iterated variances (i.e., Adam’s Rule):

V (Y ) = E[V (Y |P )] + V [E(Y |P )] = E[nP (1− P )] + V (nP )

= nE[P (1− P )] + n2V (P ).

Because P ∼ beta(α, β), we know

V (P ) =
αβ

(α + β)2(α + β + 1)

and

E[P (1− P )] =

∫ 1

0

p(1− p) Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1dp

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

p(α+1)−1(1− p)(β+1)−1dp

=
Γ(α + β)

Γ(α)Γ(β)

Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
=

αβ

(α + β + 1)(α + β)
.

Therefore,

V (Y ) = nE[P (1− P )] + n2V (P )

=
nαβ

(α + β + 1)(α + β)
+

n2αβ

(α + β)2(α + β + 1)

= n

(
α

α + β

)[
1−

(
α

α + β

)]
+

n(n− 1)αβ

(α + β)2(α + β + 1)
.

Interestingly, the variance of Y , the number of patients who respond, takes the form

V (Y ) = nE(P )[1− E(P )] +
n(n− 1)αβ

(α + β)2(α + β + 1)︸ ︷︷ ︸
excess variation

.

This extra term acknowledges the excess variation in Y arising from treating P as random
and not constant (as it is in the usual binomial distribution). �
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