1. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a Bernoulli(p) population distribution, where 0 is unknown. The population pmf is

$$p_Y(y|p) = \begin{cases} p^y(1-p)^{1-y}, & y = 0, 1 \\ 0, & \text{otherwise.} \end{cases}$$

(a) Prove that \overline{Y} is the maximum likelihood estimator of p.

(b) Find the maximum likelihood estimator of $\tau(p) = \log[p/(1-p)]$, the log-odds of p.

2. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a Weibull population distribution with m = 3 and $\alpha = 1/\theta$ so that the common pdf

$$f_Y(y|\theta) = \begin{cases} 3\theta y^2 e^{-\theta y^3}, & y > 0\\ 0, & \text{otherwise.} \end{cases}$$

Find the minimum variance unbiased estimator (MVUE) for $1/\theta$. *Hint:* Start by finding a sufficient statistic.

3. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a Poisson(θ) distribution, where $\theta > 0$ is unknown.

(a) Argue \overline{Y} is a consistent estimator for θ .

- (b) Use the CLT to determine the large-sample (approximate) distribution of \overline{Y} .
- (c) Find a consistent estimator of $g(\theta) = \ln \theta$.

(d) The third sample moment $m'_3 = n^{-1} \sum_{i=1}^n Y_i^3$ converges in probability to what constant?

4. An engineering component has a lifetime Y which follows a shifted exponential distribution, in particular, the probability density function (pdf) of Y is

$$f_Y(y|\theta) = \begin{cases} e^{-(y-\theta)}, & y > \theta\\ 0, & \text{otherwise.} \end{cases}$$

The unknown parameter $\theta > 0$ measures the magnitude of the shift. From an iid sample of component lifetimes $Y_1, Y_2, ..., Y_n$, we would like to estimate θ . (a) Show the pdf of $Y_{(1)}$, the minimum order statistic, is

$$f_{Y_{(1)}}(y) = \begin{cases} n e^{-n(y-\theta)}, & y > \theta \\ 0, & \text{otherwise.} \end{cases}$$

(b) It follows that $Y_{(1)}$ is a sufficient statistic for θ (you do not need to prove this). Find the minimum variance unbiased estimator (MVUE) of θ .

5. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a beta population distribution with $\alpha = 1$ and $\beta > 0$ so that the common pdf is

$$f_Y(y|\beta) = \begin{cases} \beta(1-y)^{\beta-1}, & 0 < y < 1\\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find the method of moments estimator (MOM) of β .
- (b) Find the maximum likelihood estimator (MLE) of β .
- (c) Find the MLE of the population variance.
- 6. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a Poisson(θ) distribution, where $\theta > 0$ is unknown.
- (a) Prove that \overline{Y} is the maximum likelihood estimator (MLE) of θ and find its variance.
- (b) We know that \overline{Y} is an unbiased estimator of θ , but so is

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}.$$

Explain or prove why.

(c) It turns out that

$$V(S^2) = \frac{\theta}{n} + \frac{2\theta^2}{n-1}.$$

You do not have to prove this fact. Which estimator has smaller variance, \overline{Y} or S^2 ? Are you surprised? Why or why not?

(d) Use the Rao-Blackwell Theorem to establish the surprising identity $E(S^2|\overline{Y}) = \overline{Y}$.

7. Consider a toxicology study with k groups of animals who are given a drug at distinct dose levels $d_1, d_2, ..., d_k$, respectively (these are fixed by the experimenter; not random). The animals are monitored for a reaction to the drug. In group i, let n_i (fixed) denote the total number of animals dosed, and let Y_i denote the number of animals that respond to the drug. The observations $Y_1, Y_2, ..., Y_k$ are treated as independent random variables, where $Y_i \sim b(n_i, p_i)$; i = 1, 2, ..., k, where p_i is the probability that an individual animal responds to dose d_i . Recall that the pmf of Y_i is given by

$$f_{Y_i}(y_i|p_i) = \binom{n_i}{y_i} p_i^{y_i} (1-p_i)^{n_i-y_i},$$

for $y_i = 0, 1, ..., n_i$. A standard assumption in such toxicology studies is that

$$\ln\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 d_i,$$

for i = 1, 2, ..., k, where β_0 and β_1 are real parameters (this is merely logistic regression using dose as a predictor).

(a) Use algebra to show that p_i , when written as a function of β_0 , β_1 , and d_i , satisfies

$$p_i = \frac{\exp(\beta_0 + \beta_1 d_i)}{1 + \exp(\beta_0 + \beta_1 d_i)}$$

(b) Find a two-dimensional sufficient statistic for (β_0, β_1) . *Hint:* First, substitute the expression for p_i from part (a) into $f_{Y_i}(y_i|p_i)$ and write the likelihood function in terms of β_0 and β_1 . Recall that $Y_1, Y_2, ..., Y_k$ are independent, so

$$L(\beta_0, \beta_1 | y_1, y_2, ..., y_k) = \prod_{i=1}^k f_{Y_i}(y_i | p_i)$$

Now, simplify using algebraic properties of exponential functions and use the Factorization Theorem for the multiple parameter case.

(c) After the data are collected, suppose that a 95 percent confidence interval for β_1 is computed to be (-0.84, 1.31). What can you say about the relationship between between dosing and response to the drug?

8. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from an exponential population distribution with mean $\beta > 0$, where β is unknown.

(a) Is \overline{Y} a sufficient statistic for β ? If so, prove it. If not, explain/prove why not.

(b) Derive (using mgfs) the distribution of \overline{Y} .

(c) Find a function of \overline{Y} that converges in distribution to a standard normal distribution as $n \to \infty$. Explain why your answer is correct.

(d) Find two consistent estimators of $\sigma^2 = \beta^2$. Explain why your answers are correct.

9. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a $\mathcal{N}(\mu, \sigma^2)$ population distribution, where both μ and σ^2 are unknown. To estimate σ^2 , we will use an estimator of the form $\hat{\sigma}^2 = cS^2$, where S^2 is the usual sample variance; that is,

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2},$$

and c > 0 is a strictly positive constant. Prove that the value of c that minimizes $MSE(\hat{\sigma}^2) = MSE(cS^2)$ is given by

$$c = \frac{n-1}{n+1}.$$

10. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a Poisson population distribution with mean $\lambda > 0$. In class, we proved that \overline{Y} is the maximum likelihood estimator of λ .

- (a) Find the maximum likelihood estimator of $P(Y_1 \leq 1) = g(\lambda) = e^{-\lambda} + \lambda e^{-\lambda}$.
- (b) Find a consistent estimator of λ .
- (c) Find a consistent estimator of $g(\lambda)$.
- (d) Use the Central Limit Theorem and Slutsky's Theorem to prove that, as $n \to \infty$,

$$Z_n = \frac{\overline{Y} - \lambda}{\sqrt{\frac{S^2}{n}}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1).$$

11. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a beta distribution with parameters $\alpha > 0$ and $\beta = 1$, so that the common pdf is

$$f_Y(y|\alpha) = \begin{cases} \alpha y^{\alpha-1}, & 0 < y < 1\\ 0, & \text{otherwise.} \end{cases}$$

(a) Show that

$$T = -\sum_{i=1}^{n} \ln Y_i$$

is a sufficient statistic for α .

(b) Derive the sampling distribution of T. *Hint:* First, use a transformation or distribution function technique to show that $W = -\ln Y$ has an exponential distribution with mean $1/\alpha$. Then, T is the sum of iid exponentials. Note that you can do this part even if you couldn't do part (a).

12. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a population with common pdf

$$f_Y(y|\theta) = \begin{cases} \frac{1}{\theta} e^{-(y-1)/\theta}, & y > 1\\ 0, & \text{otherwise.} \end{cases}$$

where $\theta > 0$ is unknown.

(a) Show $\hat{\theta} = \overline{Y} - 1$ is the minimum-variance unbiased estimator (MVUE) for θ . *Hint:* First show that

$$T = \sum_{i=1}^{n} Y_i.$$

is a sufficient statistic.

(b) Find the MVUE for $\tau(\theta) = \theta^2$. *Hint:* Calculate $E(\hat{\theta}^2)$ first.

13. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a Weibull population distribution with common pdf

$$f_Y(y|\theta) = \begin{cases} \alpha_0 \theta y^{\alpha_0 - 1} \exp(-\theta y^{\alpha_0}), & y > 0\\ 0, & \text{otherwise}, \end{cases}$$

where α_0 is known and $\theta > 0$ is unknown.

(a) Find the method of moments estimator of θ .

(b) Find the maximum likelihood estimator of θ .

14. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a gamma (α, β) population distribution, where both $\alpha > 0$ and $\beta > 0$ are unknown. Define

$$T = \sum_{i=1}^{n} Y_i.$$

(a) Is T a sufficient statistic for $\boldsymbol{\theta} = (\alpha, \beta)$? If so, prove it. If not, explain/prove why not.

(b) Derive (using mgfs) the sampling distribution of T.

(c) Find a function of T that converges in distribution to a standard normal distribution as $n \to \infty$. Explain why your answer is correct.

(d) Find a function of T that converges in probability to $\mu = \alpha\beta$ as $n \to \infty$. Explain why your answer is correct.

15. The Pareto distribution is used in economics to model income distributions. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a Pareto population distribution, where the common pdf is

$$f_Y(y|\theta) = \begin{cases} \theta \nu_0^{\theta} y^{-(\theta+1)}, & y > \nu_0 \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta > 1$ is unknown. In this population-level model, ν_0 represents the minimum income level (measured in \$1,000's). We will assume that $\nu_0 = 65$; i.e., ν_0 is a known value.

- (a) Find the method of moments estimator of θ .
- (b) Find the maximum likelihood estimator of θ .
- (c) Compute your MOM and MLE estimates with the following income data:

87.10 68.55 123.48 77.77 110.88 100.54 98.78 84.32

16. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a Bernoulli(p) population distribution, where 0 is unknown. The population pmf is

$$p_Y(y|p) = \begin{cases} p^y (1-p)^{1-y}, & y = 0, 1 \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Show that \overline{Y} is a sufficient statistic for p.
- (b) Find the MVUE of P(Y = 0) = 1 p.

17. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a population distribution with common pdf

$$f_Y(y|\mu) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-\mu)^2}, & -\infty < y < \infty \\ 0, & \text{otherwise}, \end{cases}$$

where $\mu \in \mathbb{R}$ is an unknown parameter.

- (a) Show that \overline{Y} is a sufficient statistic for μ .
- (b) Show the MVUE of $\tau(\mu) = \mu^2$ is

$$\widehat{\mu} = \overline{Y}^2 - \frac{1}{n}.$$

18. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a population distribution with common pdf

$$f_Y(y|\theta) = \begin{cases} \frac{y}{\theta} e^{-y^2/2\theta}, & y > 0\\ 0, & \text{otherwise.} \end{cases}$$

The population parameter $\theta > 0$ is unknown.

- (a) Find a sufficient statistic for θ . Then find the MVUE.
- (b) Find the MOM of θ .
- (c) Find the MLE of θ .

19. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a lognormal population distribution; i.e., the population pdf is

$$f_Y(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(\ln y - \mu)^2/2\sigma^2}, \ y > 0.$$

where $-\infty < \mu < \infty$ and $\sigma^2 > 0$. Both parameters are unknown.

(a) Derive E(Y) and $E(Y^2)$. Then find the method of moments estimators of μ and σ^2 . *Hint:* Recall that if $U \sim \mathcal{N}(\mu, \sigma^2)$, then $Y = e^U$ is lognormal with pdf given as above. Therefore, $E(Y) = E(e^U)$, which is the mgf of U when t = 1.

(b) Find the maximum likelihood estimators of μ and σ^2 . Don't worry about verifying 2nd order conditions.

20. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a gamma population distribution with shape parameter $\alpha = 2$ and scale parameter θ , where $\theta > 0$ is unknown.

(a) Using the definition, show that

$$T = \sum_{i=1}^{n} Y_i$$

is a sufficient statistic. By "using the definition," I mean do not use the Factorization Theorem. (b) Here are two unbiased estimators of $\tau(\theta) = \theta^2$:

$$\hat{\tau}_1 = \frac{S^2}{2}$$

$$\hat{\tau}_2 = \frac{1}{2} \left(\frac{n}{2n+1}\right) \overline{Y}^2.$$

The relative efficiency of $\hat{\tau}_1$ to $\hat{\tau}_2$ is

eff
$$(\hat{\tau}_1 \text{ to } \hat{\tau}_2) = \frac{V(\hat{\tau}_2)}{V(\hat{\tau}_1)}.$$

Is $\operatorname{eff}(\hat{\tau}_1 \text{ to } \hat{\tau}_2) < 1$, $\operatorname{eff}(\hat{\tau}_1 \text{ to } \hat{\tau}_2) = 1$, or $\operatorname{eff}(\hat{\tau}_1 \text{ to } \hat{\tau}_2) > 1$? Explain.

21. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a $\mathcal{N}(0, \sigma^2)$ population distribution. That is, the population mean μ is known and is equal to 0. The population variance $\sigma^2 > 0$ is unknown. (a) Show that \overline{Y} is not a sufficient statistic. *Hint:* Show the conditional distribution of the sample **Y** given \overline{Y} is *not* free of σ^2 .

(b) Find a function of \overline{Y} that is an unbiased estimator of σ^2 . *Hint:* Start by considering \overline{Y}^2 . (c) Is your unbiased estimator in part (b) the MVUE for σ^2 ? Explain.

22. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a population with probability density function

$$f_Y(y|\theta) = \begin{cases} \theta \left(\frac{1}{y+1}\right)^{\theta+1}, & y > 0\\ 0, & \text{otherwise.} \end{cases}$$

The population parameter $\theta > 0$ is unknown.

(a) Use the Factorization Theorem to show

$$T = \prod_{i=1}^{n} \left(\frac{1}{Y_i + 1} \right)$$

is a sufficient statistic.

(b) Use the transformation method (from Chapter 6) to show

$$U = h(Y) = -\ln\left(\frac{1}{Y+1}\right) \sim \operatorname{exponential}\left(\frac{1}{\theta}\right).$$

and therefore prove $V = -\ln T \sim \text{gamma}(n, 1/\theta)$. (c) Find the MVUE of θ . *Hint:* Find a function of V that is an unbiased estimator of θ . 23. Consider the population-level probability density function (pdf)

$$f_Y(y|\theta) = \begin{cases} \frac{1}{2}(1+\theta y), & -1 < y < 1\\ 0, & \text{otherwise.} \end{cases}$$

The population parameter θ describes the decay distribution of electrons from muon decay when $Y = \cos(W)$, and W is the angle measured in an experiment. The parameter θ , which is related to polarization, is to be estimated using an iid sample $Y_1, Y_2, ..., Y_n$ from $f_Y(y|\theta)$. The parameter θ satisfies $-1 < \theta < 1$ and is unknown.

(a) Is there a scalar (i.e., one-dimensional) statistic T which is sufficient? If so, find it. If not, show why not.

(b) Find the method of moments (MOM) estimator of θ . Is the MOM estimator unbiased?

(c) Write out the likelihood function $L(\theta|\mathbf{y})$ and also the score equation that would be solved to find the maximum likelihood estimator (MLE). Recall the score equation is simply

$$\frac{\partial}{\partial \theta} \ln L(\theta | \mathbf{y}) \stackrel{\text{set}}{=} 0.$$

The score equation can not be solved analytically in this example, so you can not find a closedform expression for the MLE.

24. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a $\mathcal{N}(\mu_0, \sigma^2)$ population distribution, where the population mean μ_0 is known and the population variance $\sigma^2 > 0$ is unknown. (a) Show that

$$T = \sum_{i=1}^{n} (Y_i - \mu_0)^2$$

is a sufficient statistic for σ^2 .

(b) Consider the two point estimators of σ^2 :

$$\hat{\sigma}_{1}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$
$$\hat{\sigma}_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mu_{0})^{2}.$$

Argue that both are unbiased.

(c) The relative efficiency of $\widehat{\sigma}_1^2$ to $\widehat{\sigma}_2^2$ is

$$\operatorname{eff}(\widehat{\sigma}_1^2 \text{ to } \widehat{\sigma}_2^2) = \frac{V(\widehat{\sigma}_2^2)}{V(\widehat{\sigma}_1^2)}.$$

Is $\operatorname{eff}(\widehat{\sigma}_1^2 \text{ to } \widehat{\sigma}_2^2) < 1$, $\operatorname{eff}(\widehat{\sigma}_1^2 \text{ to } \widehat{\sigma}_2^2) = 1$, or $\operatorname{eff}(\widehat{\sigma}_1^2 \text{ to } \widehat{\sigma}_2^2) > 1$? Explain.

25. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from an exponential (β) population distribution, where $\beta > 0$ is unknown. Recall in class, we showed $\sum_{i=1}^{n} Y_i$ is a sufficient statistic. (a) Show that $T = Y_{(1)}$ is not a sufficient statistic. Do this by showing

$$f_{\mathbf{Y}|Y_{(1)}}(\mathbf{y}|t) = \frac{f_{\mathbf{Y}}(\mathbf{y})}{f_{Y_{(1)}}(t)}$$

depends on β .

(b) Argue that $\hat{\beta} = nY_{(1)}$ is an unbiased estimator of β . (c) Define the point estimator $\hat{\beta}^* = E(\hat{\beta}|\sum_{i=1}^n Y_i)$. Explain why $\hat{\beta}^*$ is unbiased. How do $V(\hat{\beta})$ and $V(\hat{\beta}^*)$ compare?

26. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a population with probability density function (pdf)

$$f_Y(y) = \begin{cases} \sqrt{\frac{2}{\pi}} & \frac{y^2}{\theta^3} \exp\left(-\frac{y^2}{2\theta^2}\right), \quad y > 0\\ 0, & \text{otherwise,} \end{cases}$$

where the population parameter $\theta > 0$ is unknown. This is called the *Maxwell distribution*. It is used in the physical sciences to model characteristics of gases and molecules. (a) Show that

$$E(Y) = \sqrt{\frac{8}{\pi}} \ \theta$$

and then find the method of moments (MOM) estimator of θ .

(b) Find a sufficient statistic for θ .

(c) Determine the UMVUE for θ^2 . *Hint:* Find a function of a sufficient statistic that is an unbiased estimator of θ^2 .

27. Suppose $Y_1, Y_2, ..., Y_n$ are mutually independent random variables satisfying

$$Y_i \sim \text{Poisson}(\theta x_i),$$

for i = 1, 2, ..., n. That is, Y_i is distributed as Poisson with mean equal to θx_i . The populationlevel parameter $\theta > 0$ is unknown. The x_i 's are fixed constants which are observed.

(a) Why aren't the Y_i 's identically distributed?

(b) Show the likelihood function is given by

$$L(\theta|\mathbf{y}) = c\theta^{y_+} \exp(-\theta x_+),$$

where $y_{+} = \sum_{i=1}^{n} y_i$, $x_{+} = \sum_{i=1}^{n} x_i$, and c is a constant free of θ . (c) Show the maximum likelihood estimator of θ is

$$\widehat{\theta} = \frac{Y_+}{x_+}.$$

(d) The data below provide the number of doctor's office/hospital visits per household Y and the number of residents per household x for a random sample of n = 10 health insurance policies:

y	7	2	5	2	4	7	4	9	3	12
x	4	1	3	1	5	3	4	6	1	5

Under the Poisson model described above, calculate the maximum likelihood estimate of θ for these data. Also provide an estimate of the standard error of θ .

28. A random sample of 100 men produced a total of 25 who favored a controversial local issue. An independent random sample of 100 women produced a total of 35 who favored the same issue. Suppose p_M is the population proportion of men who favor the issue and p_W is the corresponding population proportion for women. Both parameters are unknown. The underlying statistical model in this situation can be written as

- $X_1, X_2, ..., X_{100}$ is an iid sample from a Bernoulli (p_M) distribution
- $Y_1, Y_2, ..., Y_{100}$ is an iid sample from a Bernoulli (p_W) distribution,

where the two samples are independent (therefore, all 200 random variables are mutually independent). In both samples, a "success" (i.e., $X_i = 1$ or $Y_j = 1$) is understood to mean the individual favors the issue.

(a) Show the likelihood function of p_M and p_W is

$$L(p_M, p_W) = p_M^{\sum_{i=1}^{100} x_i} (1 - p_M)^{100 - \sum_{i=1}^{100} x_i} p_W^{\sum_{j=1}^{100} y_j} (1 - p_W)^{100 - \sum_{j=1}^{100} y_j},$$

and calculate the maximum likelihood estimates of p_M and p_W using the information in the first paragraph.

(b) A friend of yours believes men and women favor this issue equally and hence $p_M = p_W = p$, where p is the common proportion in the two populations (still unknown). Determine the MLE of p and calculate it with the information in the first paragraph.

Hint: In part (b), you could rewrite the likelihood function in part (a) in terms of the common p and then maximize it over $0 . Alternatively, you could maximize <math>L(p_M, p_W)$ in two dimensions subject to the constraint that $p_M = p_W$. This can be done by using Lagrange multipliers.

29. An engineering component has a lifetime Y which follows a shifted exponential distribution, in particular, the probability density function (pdf) of Y is

$$f_Y(y|\theta) = \begin{cases} e^{-(y-\theta)}, & y > \theta \\ 0, & \text{otherwise.} \end{cases}$$

The unknown parameter $\theta > 0$ measures the magnitude of the shift. From an iid sample of component lifetimes $Y_1, Y_2, ..., Y_n$, we would like to estimate θ . (a) Show the pdf of $Y_{(1)}$, the minimum order statistic, is

$$f_{Y_{(1)}}(y) = \left\{ \begin{array}{ll} ne^{-n(y-\theta)}, & y > \theta \\ 0, & \text{otherwise.} \end{array} \right.$$

(b) Show that $Y_{(1)}$ is a consistent estimator of θ .

30. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a beta (α, β) population distribution, where $\alpha = \beta = \theta$, and $\theta > 0$ is unknown. That is, the population probability density function (pdf) is

$$f_Y(y) = \begin{cases} \frac{\Gamma(2\theta)}{[\Gamma(\theta)]^2} y^{\theta-1} (1-y)^{\theta-1}, & 0 < y < 1 \\ 0, & \text{otherwise.} \end{cases}$$

(a) Find the method of moments (MOM) estimator of θ . *Hint:* E(Y) = 1/2 is free of θ , so equate second moments.

(b) Is the MOM estimator a consistent estimator of θ ? Prove or disprove.

31. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a Poisson population distribution with mean $\lambda > 0$. The Central Limit Theorem (Chapter 7) assures us that

$$\frac{\overline{Y} - \lambda}{\sqrt{\frac{\lambda}{n}}} \xrightarrow{d} \mathcal{N}(0, 1), \quad \text{as } n \to \infty.$$

(a) Carefully argue that

$$rac{\overline{Y} - \lambda}{\sqrt{rac{\overline{Y}}{n}}}$$
 and $rac{\overline{Y} - \lambda}{\sqrt{rac{S^2}{n}}}$

also converge in distribution to $\mathcal{N}(0,1)$, as $n \to \infty$. *Hint:* Argue that \overline{Y} and S^2 are both consistent estimators of λ and then use Slutsky's Theorem.

(b) Derive large-sample $100(1 - \alpha)\%$ confidence intervals for λ using each quantity in part (a). Note that each one is a large-sample pivot.

(c) Suppose n = 100, $\lambda = 10$, and you calculate

$$\frac{\overline{Y} - 10}{\sqrt{\frac{\overline{Y}}{100}}}.$$

Between what two values would you expect this statistic to fall with probability approximately equal to 0.95? What might you conclude if it fell well outside this range?

32. Suppose $Y_1, Y_2, ..., Y_n$ is an iid sample from a Bernoulli(p) population distribution, where 0 . The population pmf is

$$p_Y(y|p) = \begin{cases} p^y (1-p)^{1-y}, & y = 0, 1 \\ 0, & \text{otherwise.} \end{cases}$$

(a) Prove that

$$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

is the maximum likelihood estimator (MLE) of p.

(b) Use the large-sample properties of MLEs to show that

$$\widehat{p} \sim \mathcal{AN}\left(p, \frac{p(1-p)}{n}\right),$$

for large n. Note this is the same result you would get by applying the CLT directly.