
STAT 512 HW10 SOLUTIONS

9.19. In this problem, Y1, Y2, ..., Yn is an iid sample from a beta(θ, 1) population, where θ > 0
is unknown. The population pdf is

fY (y) =

{
θyθ−1, 0 < y < 1

0, otherwise.

In general, the WLLN says

Y =
1

n

n∑
i=1

Yi
p−→ E(Y ) = µ,

as n→∞. The expected value of Y ∼ beta(θ, 1) is

E(Y ) =
θ

θ + 1
.

Therefore,

Y =
1

n

n∑
i=1

Yi
p−→ θ

θ + 1
,

as n→∞. That is, Y is a consistent estimator of θ/(θ + 1).

9.24. In this problem, Y1, Y2, ..., Yn is an iid sample from a N (0, 1) population distribution.
For part (a), we know

Ui = Y 2
i ∼ χ2(1).

Therefore, U1, U2, ..., Un are iid χ2(1) and therefore

n∑
i=1

Y 2
i =

n∑
i=1

Ui ∼ χ2(n).

Recall the “degrees of freedom add” because of independence.

(b) Note that

Wn =
1

n

n∑
i=1

Y 2
i =

1

n

n∑
i=1

Ui

is the sample mean of U1, U2, ..., Un, which are iid χ2(1). From the WLLN, we know

Wn =
1

n

n∑
i=1

Ui
p−→ E(U) = 1,

as n→∞. Recall the mean of a χ2 random variable is equal to its degrees of freedom.

9.32. In this problem, Y1, Y2, ..., Yn is an iid sample from a population with pdf

fY (y) =


2

y2
, y ≥ 2

0, otherwise.
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In general, the WLLN says

Y =
1

n

n∑
i=1

Yi
p−→ E(Y ) = µ,

as n→∞. However, note that

E(Y ) =

∫
R
yfY (y)dy =

∫ ∞
2

2

y
dy = 2

(
ln y
∣∣∣∞
2

)
= +∞.

Therefore, the WLLN does not apply in this case. Recall when we proved the WLLN, we
assumed σ2 = V (Y ) < ∞ which requires finite second moments; i.e., E(Y 2) < ∞. In this
population, the first moment E(Y ) isn’t even finite.

9.33. In this problem, we have two independent random samples:

• X1, X2, ..., Xn is an iid sample from a Poisson(λ1) population (Bacteria A counts)

• Y1, Y2, ..., Yn is an iid sample from a Poisson(λ2) population (Bacteria B counts).

The goal is to estimate the parameter

λ1
λ1 + λ2

=
mean number of Bacteria A

mean number of both bacteria combined
.

Define the sample means

X =
1

n

n∑
i=1

Xi and Y =
1

n

n∑
i=1

Yi.

Because X is an unbiased estimator for E(X) = λ1 and Y is an unbiased estimator for E(Y ) =
λ2, an obvious estimator to suggest is

X

X + Y
.

This is not an unbiased estimator of λ1/(λ1 + λ2) because

E

(
X

X + Y

)
6= E(X)

E(X + Y )
=

λ1
λ1 + λ2

.

Note that expectations are linear (i.e., the expectation of a ratio is not the ratio of the ex-
pectations). However, our proposed estimator is a consistent estimator. From the WLLN, we
know

X
p−→ λ1 and Y

p−→ λ2.

Therefore,
X + Y

p−→ λ1 + λ2

and therefore
X

X + Y

p−→ λ1
λ1 + λ2

.

All probability limits above apply as n→∞. This example illustrates an important point−even
biased estimators can be consistent! This is not a contradiction. Bias is a finite-sample concept
(that is, for fixed sample size n). On the other hand, consistency is a large-sample concept; i.e.,
a concept that explores what is happening when the sample size n→∞.
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Another fact about the estimator
X

X + Y

is that it is the MLE of λ1/(λ1 + λ2). Recall we showed in the notes (Example 9.17) that the
sample mean is the MLE of a Poisson population mean. Therefore, X is the MLE of λ1 and Y
is the MLE of λ2. By the invariance property of MLEs,

X

X + Y
is the MLE of

λ1
λ1 + λ2

.

9.81. In this problem, Y1, Y2, ..., Yn is an iid sample from an exponential(θ) population distri-
bution, where θ > 0 is unknown. The population pdf is

fY (y|θ) =


1

θ
e−y/θ, y > 0

0, otherwise.

The likelihood function is given by

L(θ|y) =
1

θ
e−y1/θ × 1

θ
e−y2/θ × · · · × 1

θ
e−yn/θ =

(
1

θ

)n
e−

∑n
i=1 yi/θ.

The log-likelihood function is given by

lnL(θ|y) = ln

[(
1

θ

)n
e−

∑n
i=1 yi/θ

]
= ln

[(
1

θ

)n]
+ ln

(
e−

∑n
i=1 yi/θ

)
= n (ln 1− ln θ)−

∑n
i=1 yi
θ

= −n ln θ −
∑n

i=1 yi
θ

.

The derivative of the log-likelihood function is given by

∂

∂θ
lnL(θ|y) = −n

θ
+

∑n
i=1 yi
θ2

set
= 0

=⇒ −nθ +
n∑
i=1

yi = 0 =⇒
n∑
i=1

yi = nθ =⇒ θ̂ =
1

n

n∑
i=1

yi = y.

We now show this first-order critical point θ̂ maximizes lnL(θ|y). The second derivative of the
log-likelihood function is given by

∂2

∂θ2
lnL(θ|y) =

n

θ2
−

2
∑n

i=1 yi
θ3

.

Note that

∂2

∂θ2
lnL(θ|y)

∣∣∣
θ=y

=
n

y2
−

2
∑n

i=1 yi
y3

=
ny

y3
− 2ny

y3
= −ny

y3
= − n

y2
< 0.

Therefore, θ̂ = y maximizes lnL(θ|y). The MLE of θ is

θ̂ =
1

n

n∑
i=1

Yi = Y ,
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the sample mean. We have shown Y is the MLE of θ. Therefore, Y
2

is the MLE of θ2, by the
invariance property of MLEs.

9.82. In this problem, Y1, Y2, ..., Yn is an iid sample from a Weibull(r, θ) population, where r
is known and θ > 0 is unknown.

Note: The Rayleigh population distribution is a special case of the Weibull when r = 2; in the
notes (Example 9.18, pp 144), we determined the MLE of θ is

θ̂ =
1

n

n∑
i=1

Y 2
i .

In Problem 9.81 (above), the exponential distribution is a special case of the Weibull when
r = 1; we determined the MLE of θ is

θ̂ =
1

n

n∑
i=1

Yi.

For the general Weibull(r, θ) population distribution, the MLE of θ (when r is known) is

θ̂ =
1

n

n∑
i=1

Y r
i ,

the rth sample moment. We now show this. The likelihood function is given by

L(θ|y) =
ryr−11

θ
e−y

r
1/θ × ryr−12

θ
e−y

r
2/θ × · · · × ryr−1n

θ
e−y

r
n/θ =

(r
θ

)n( n∏
i=1

yr−1i

)
e−

∑n
i=1 y

r
i /θ.

Note that we can write

L(θ|y) =
(r
θ

)n
e−

∑n
i=1 y

r
i /θ︸ ︷︷ ︸

g(t,θ)

×
n∏
i=1

yr−1i︸ ︷︷ ︸
h(y1,y2,...,yn)

,

where t =
∑n

i=1 y
r
i . By the Factorization Theorem, it follows that T =

∑n
i=1 Y

r
i is a sufficient

statistic; this is part (a).

(b) The log-likelihood function is given by

lnL(θ|y) = ln

[(r
θ

)n( n∏
i=1

yr−1i

)
e−

∑n
i=1 y

r
i /θ

]

= ln
[(r
θ

)n]
+ ln

(
n∏
i=1

yri

)
+ ln

(
e−

∑n
i=1 y

r
i /θ
)

= n (ln r − ln θ) + ln

(
n∏
i=1

yri

)
−
∑n

i=1 y
r
i

θ
.
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The derivative of the log-likelihood function is given by

∂

∂θ
lnL(θ|y) = −n

θ
+

∑n
i=1 y

r
i

θ2
set
= 0

=⇒ −nθ +

n∑
i=1

yri = 0 =⇒
n∑
i=1

yri = nθ =⇒ θ̂ =
1

n

n∑
i=1

yri .

Showing this first-order critical point θ̂ maximizes lnL(θ|y) is done in the same way as in the
exponential and Rayleigh cases. The second derivative of the log-likelihood function is given by

∂2

∂θ2
lnL(θ|y) =

n

θ2
−

2
∑n

i=1 y
r
i

θ3
.

Note that

∂2

∂θ2
lnL(θ|y)

∣∣∣
θ=θ̂

=
n

θ̂2
−

2
∑n

i=1 y
r
i

θ̂3
=
nθ̂

θ̂3
− 2nθ̂

θ̂3
= −nθ̂

θ̂3
= − n

θ̂2
< 0.

Therefore, θ̂ maximizes lnL(θ|y). The MLE of θ is

θ̂ =
1

n

n∑
i=1

Y r
i .

(c) The MLE θ̂ above is the MVUE of θ (when r is known). First note that θ̂ is a function of
the sufficient statistic T =

∑n
i=1 Y

r
i . Now, let’s show that it is an unbiased estimator of θ. We

have

E(θ̂) = E

(
1

n

n∑
i=1

Y r
i

)
=

1

n

n∑
i=1

E(Y r
i ).

The rth moment of Y ∼Weibull(r, θ) is

E(Y r) =

∫
R
yrfY (y)dy =

∫ ∞
0

yr × ryr−1

θ
e−y

r/θdy.

In the last integral, let
u = yr =⇒ du = ryr−1dy.

The limits on the integral do not change under this transformation. Therefore,

E(Y r) =

∫ ∞
0

yr × ryr−1

θ
e−y

r/θdy =

∫ ∞
0

u
ryr−1

θ
e−u/θ

du

ryr−1
=

∫ ∞
0

u× 1

θ
e−u/θdu = E(U),

where U ∼ exponential(θ). Therefore E(Y r) = E(U) = θ. Therefore,

E(θ̂) =
1

n

n∑
i=1

θ =
1

n
(nθ) = θ.

This proves θ̂ is the MVUE of θ. It is a function of a sufficient statistic T and it is unbiased.
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9.92. In this problem, Y1, Y2, ..., Yn is an iid sample from a population with pdf

fY (y) =


3y2

θ3
, 0 ≤ y ≤ θ

0, otherwise,

where the population parameter θ > 0 is unknown. In Problem 9.63 (HW9), we calculated the
likelihood function:

L(θ|y) =

(
3

θ3

)n( n∏
i=1

y2i

)
I(0 ≤ y(n) ≤ θ).

We see the support depends on θ in the population pdf fY (y) so L(θ|y) is not a differentiable
function of θ. A graph of the likelihood function L(θ|y) is shown above. Note that

• For θ ≥ y(n), L(θ|y) =
(

3
θ3

)n∏n
i=1 y

2
i , which is a decreasing function of θ (see above).

• For θ < y(n), L(θ|y) = 0.

Clearly, the MLE of θ is θ̂ = Y(n).

(b) In Problem 9.63 (HW9), we derived the pdf of Y(n) to be

fY(n)
(y) =


3ny3n−1

θ3n
, 0 ≤ y ≤ θ

0, otherwise.

Consider the function

Q =
Yn
θ
.

We will now show the distribution of Q is free of θ; i.e., Q is a pivotal quantity. The support
of Q is

RQ = {q : 0 ≤ q ≤ 1}.
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1 − α

α 2 α 2

Therefore, the pdf of Q is nonzero over [0, 1]. For 0 ≤ q ≤ 1, the cdf of Q is

FQ(q) = P (Q ≤ q) = P

(
Y(n)

θ
≤ q
)

= P (Y(n) ≤ qθ)

=

∫ qθ

0
fY(n)

(y)dy

=

∫ qθ

0

3ny3n−1

θ3n
dy

=
1

θ3n

(
y3n
∣∣∣qθ
0

)
=

(qθ)3n

θ3n
= q3n.

Summarizing,

FQ(q) =


0 q < 0

q3n, 0 ≤ q ≤ 1

1, q > 1.

Therefore, Q is a pivotal quantity because its distribution does not depend on θ. Taking
derivatives, the pdf of Q is

fQ(q) =

{
3nq3n−1, 0 ≤ q ≤ 1

0, otherwise.

We recognize fQ(q) as a beta pdf with α = 3n and β = 1.

(c) Define

b3n,1,1−α/2 = lower α/2 quantile of beta(3n, 1)

b3n,1,α/2 = upper α/2 quantile of beta(3n, 1);
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see the figure at the top of the previous page where I have graphed the beta(3n, 1) pdf. Because
Q ∼ beta(3n, 1), we can write

1− α = P
(
b3n,1,1−α/2 < Q < b3n,1,α/2

)
=

(
b3n,1,1−α/2 <

Y(n)

θ
< b3n,1,α/2

)
= P

(
1

b3n,1,1−α/2
>

θ

Y(n)
>

1

b3n,1,α/2

)
= P

(
Y(n)

b3n,1,1−α/2
> θ >

Y(n)

b3n,1,α/2

)
= P

(
Y(n)

b3n,1,α/2︸ ︷︷ ︸
θL

< θ <
Y(n)

b3n,1,1−α/2︸ ︷︷ ︸
θU

)
.

Therefore, (
Y(n)

b3n,1,α/2
,

Y(n)

b3n,1,1−α/2

)
is a 100(1− α)% confidence interval for θ.

9.97. In this problem, Y1, Y2, ..., Yn is an iid sample from a geometric(p) population distribution,
where the success probability p is unknown (0 < p < 1). In part (a), we want to find the MOM
estimator of p. There is only 1 parameter in this population pdf, so to find the MOM estimator
we only need one equation. The first population moment is

E(Y ) =
1

p

The first sample moment is

1

n

n∑
i=1

Yi = Y .

Therefore, the MOM estimator of p is found by solving

1

p

set
= Y =⇒ p̂ =

1

Y
.

(b) We now find the MLE. The likelihood function is

L(p|y) =
n∏
i=1

pY (yi|p) = pY (y1|p)× pY (y2|p)× · · · × pY (yn|p)

= (1− p)y1−1p× (1− p)y2−1p× · · · × (1− p)yn−1p
= (1− p)

∑n
i=1 yi−npn.

The log-likelihood function is

lnL(p|y) = ln
[
(1− p)

∑n
i=1 yi−npn

]
= ln

[
(1− p)

∑n
i=1 yi−n

]
+ ln pn =

(
n∑
i=1

yi − n

)
ln(1− p) + n ln p.
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The derivative of the log-likelihood function is

∂

∂p
lnL(p|y) = −

(
∑n

i=1 yi − n)

1− p
+
n

p

set
= 0

=⇒ −p

(
n∑
i=1

yi − n

)
+ n(1− p) = 0

=⇒ −p
n∑
i=1

yi + np+ n− np = 0

=⇒ −p
n∑
i=1

yi + n = 0 =⇒ n = p
n∑
i=1

yi =⇒ p̂ =
n∑n
i=1 yi

=
1

y
.

We now show this first-order critical point p̂ maximizes lnL(p|y). The second derivative of the
log-likelihood function is given by

∂2

∂p2
lnL(p|y) = −

(
∑n

i=1 yi − n)

(1− p)2
− n

p2
.

Note that

∂2

∂p2
lnL(p|y)

∣∣∣
p= 1

y

= −
(
∑n

i=1 yi − n)(
1− 1

y

)2 − n(
1
y

)2
= − (ny − n)(

y − 1

y2

)2 − ny
2 = − n(y − 1)(

y − 1

y2

)2 − ny
2 = − ny2

y − 1
− ny2 < 0,

because y > 1. Therefore, p̂ = 1/y maximizes lnL(p|y). The MLE of p is

p̂ =
1

Y
.

Therefore, the MOM estimator and MLE of p are the same in this example.

9.107. In this problem, Y1, Y2, ..., Yn is an iid sample from an exponential(θ) population dis-
tribution, where θ > 0 is unknown. In Problem 9.81, we already showed θ̂ = Y is the MLE
of θ. Therefore, the MLE of the reliability at time t, that is, F (t) = e−t/θ, is e−t/Y , by invariance.

9.112. In this problem, Y1, Y2, ..., Yn is an iid sample from a Poisson(λ) population distribution,
where λ > 0 is unknown. In part (a), we want to show

Wn =
Y − λ√
Y /n

d−→ N (0, 1),

as n → ∞. In this population, we know µ = E(Y ) = λ and σ2 = V (Y ) = λ. Therefore, from
the CLT, we know

Un =
Y − λ√
λ/n

d−→ N (0, 1),
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as n→∞. From the WLLN, we know

Y
p−→ λ =⇒ Y

λ

p−→ 1 =⇒ Vn =

√
Y

λ

p−→ 1;

the last two implications follow from continuity. Now, simply note that

Wn =
Y − λ√
Y /n

=

Y − λ√
λ/n√
Y

λ

=
Un
Vn

d−→ N (0, 1),

by Slutsky’s Theorem.

(b) Because

Wn =
Y − λ√
Y /n

d−→ N (0, 1),

as n→∞, we can write

1− α ≈ P

−zα/2 < Y − λ√
Y /n

< zα/2

 = P

−zα/2
√
Y

n
< Y − λ < zα/2

√
Y

n


= P

zα/2
√
Y

n
> λ− Y > −zα/2

√
Y

n


= P

Y + zα/2

√
Y

n
> λ > Y − zα/2

√
Y

n


= P

Y − zα/2
√
Y

n
< λ < Y + zα/2

√
Y

n

 .

This argument proves Y − zα/2
√
Y

n
, Y + zα/2

√
Y

n


is a large-sample 100(1− α)% confidence interval for the population mean λ.
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