9.19. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a $\operatorname{beta}(\theta, 1)$ population, where $\theta>0$ is unknown. The population pdf is

$$
f_{Y}(y)=\left\{\begin{array}{cl}
\theta y^{\theta-1}, & 0<y<1 \\
0, & \text { otherwise } .
\end{array}\right.
$$

In general, the WLLN says

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{p} E(Y)=\mu
$$

as $n \rightarrow \infty$. The expected value of $Y \sim \operatorname{beta}(\theta, 1)$ is

$$
E(Y)=\frac{\theta}{\theta+1} .
$$

Therefore,

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{p} \frac{\theta}{\theta+1},
$$

as $n \rightarrow \infty$. That is, \bar{Y} is a consistent estimator of $\theta /(\theta+1)$.
9.24. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a $\mathcal{N}(0,1)$ population distribution. For part (a), we know

$$
U_{i}=Y_{i}^{2} \sim \chi^{2}(1)
$$

Therefore, $U_{1}, U_{2}, \ldots, U_{n}$ are iid $\chi^{2}(1)$ and therefore

$$
\sum_{i=1}^{n} Y_{i}^{2}=\sum_{i=1}^{n} U_{i} \sim \chi^{2}(n)
$$

Recall the "degrees of freedom add" because of independence.
(b) Note that

$$
W_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}=\frac{1}{n} \sum_{i=1}^{n} U_{i}
$$

is the sample mean of $U_{1}, U_{2}, \ldots, U_{n}$, which are iid $\chi^{2}(1)$. From the WLLN, we know

$$
W_{n}=\frac{1}{n} \sum_{i=1}^{n} U_{i} \xrightarrow{p} E(U)=1,
$$

as $n \rightarrow \infty$. Recall the mean of a χ^{2} random variable is equal to its degrees of freedom.
9.32. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a population with pdf

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{2}{y^{2}}, & y \geq 2 \\
0, & \text { otherwise }
\end{array}\right.
$$

In general, the WLLN says

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{p} E(Y)=\mu,
$$

as $n \rightarrow \infty$. However, note that

$$
E(Y)=\int_{\mathbb{R}} y f_{Y}(y) d y=\int_{2}^{\infty} \frac{2}{y} d y=2\left(\left.\ln y\right|_{2} ^{\infty}\right)=+\infty .
$$

Therefore, the WLLN does not apply in this case. Recall when we proved the WLLN, we assumed $\sigma^{2}=V(Y)<\infty$ which requires finite second moments; i.e., $E\left(Y^{2}\right)<\infty$. In this population, the first moment $E(Y)$ isn't even finite.
9.33. In this problem, we have two independent random samples:

- $X_{1}, X_{2}, \ldots, X_{n}$ is an iid sample from a Poisson $\left(\lambda_{1}\right)$ population (Bacteria A counts)
- $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a Poisson(λ_{2}) population (Bacteria B counts).

The goal is to estimate the parameter

$$
\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}=\frac{\text { mean number of Bacteria A }}{\text { mean number of both bacteria combined }} .
$$

Define the sample means

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text { and } \quad \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} .
$$

Because \bar{X} is an unbiased estimator for $E(X)=\lambda_{1}$ and \bar{Y} is an unbiased estimator for $E(Y)=$ λ_{2}, an obvious estimator to suggest is

$$
\frac{\bar{X}}{\bar{X}+\bar{Y}} .
$$

This is not an unbiased estimator of $\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$ because

$$
E\left(\frac{\bar{X}}{\bar{X}+\bar{Y}}\right) \neq \frac{E(\bar{X})}{E(\bar{X}+\bar{Y})}=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} .
$$

Note that expectations are linear (i.e., the expectation of a ratio is not the ratio of the expectations). However, our proposed estimator is a consistent estimator. From the WLLN, we know

$$
\bar{X} \xrightarrow{p} \lambda_{1} \text { and } \bar{Y} \xrightarrow{p} \lambda_{2} .
$$

Therefore,

$$
\bar{X}+\bar{Y} \xrightarrow{p} \lambda_{1}+\lambda_{2}
$$

and therefore

$$
\frac{\bar{X}}{\bar{X}+\bar{Y}} \xrightarrow{p} \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} .
$$

All probability limits above apply as $n \rightarrow \infty$. This example illustrates an important point-even biased estimators can be consistent! This is not a contradiction. Bias is a finite-sample concept (that is, for fixed sample size n). On the other hand, consistency is a large-sample concept; i.e., a concept that explores what is happening when the sample size $n \rightarrow \infty$.

Another fact about the estimator

$$
\frac{\bar{X}}{\bar{X}+\bar{Y}}
$$

is that it is the MLE of $\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$. Recall we showed in the notes (Example 9.17) that the sample mean is the MLE of a Poisson population mean. Therefore, \bar{X} is the MLE of λ_{1} and \bar{Y} is the MLE of λ_{2}. By the invariance property of MLEs,

$$
\frac{\bar{X}}{\bar{X}+\bar{Y}} \text { is the MLE of } \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} .
$$

9.81. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from an exponential (θ) population distribution, where $\theta>0$ is unknown. The population pdf is

$$
f_{Y}(y \mid \theta)=\left\{\begin{array}{cc}
\frac{1}{\theta} e^{-y / \theta}, & y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

The likelihood function is given by

$$
L(\theta \mid \mathbf{y})=\frac{1}{\theta} e^{-y_{1} / \theta} \times \frac{1}{\theta} e^{-y_{2} / \theta} \times \cdots \times \frac{1}{\theta} e^{-y_{n} / \theta}=\left(\frac{1}{\theta}\right)^{n} e^{-\sum_{i=1}^{n} y_{i} / \theta} .
$$

The log-likelihood function is given by

$$
\begin{aligned}
\ln L(\theta \mid \mathbf{y}) & =\ln \left[\left(\frac{1}{\theta}\right)^{n} e^{-\sum_{i=1}^{n} y_{i} / \theta}\right] \\
& =\ln \left[\left(\frac{1}{\theta}\right)^{n}\right]+\ln \left(e^{-\sum_{i=1}^{n} y_{i} / \theta}\right)=n(\ln 1-\ln \theta)-\frac{\sum_{i=1}^{n} y_{i}}{\theta}=-n \ln \theta-\frac{\sum_{i=1}^{n} y_{i}}{\theta} .
\end{aligned}
$$

The derivative of the log-likelihood function is given by

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \ln L(\theta \mid \mathbf{y}) & =-\frac{n}{\theta}+\frac{\sum_{i=1}^{n} y_{i}}{\theta^{2}} \stackrel{\text { set }}{=} 0 \\
& \Longrightarrow-n \theta+\sum_{i=1}^{n} y_{i}=0 \Longrightarrow \sum_{i=1}^{n} y_{i}=n \theta \Longrightarrow \widehat{\theta}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\bar{y}
\end{aligned}
$$

We now show this first-order critical point $\widehat{\theta}$ maximizes $\ln L(\theta \mid \mathbf{y})$. The second derivative of the log-likelihood function is given by

$$
\frac{\partial^{2}}{\partial \theta^{2}} \ln L(\theta \mid \mathbf{y})=\frac{n}{\theta^{2}}-\frac{2 \sum_{i=1}^{n} y_{i}}{\theta^{3}}
$$

Note that

$$
\left.\frac{\partial^{2}}{\partial \theta^{2}} \ln L(\theta \mid \mathbf{y})\right|_{\theta=\bar{y}}=\frac{n}{\bar{y}^{2}}-\frac{2 \sum_{i=1}^{n} y_{i}}{\bar{y}^{3}}=\frac{n \bar{y}}{\bar{y}^{3}}-\frac{2 n \bar{y}}{\bar{y}^{3}}=-\frac{n \bar{y}}{\bar{y}^{3}}=-\frac{n}{\bar{y}^{2}}<0 .
$$

Therefore, $\widehat{\theta}=\bar{y}$ maximizes $\ln L(\theta \mid \mathbf{y})$. The MLE of θ is

$$
\widehat{\theta}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\bar{Y}
$$

the sample mean. We have shown \bar{Y} is the MLE of θ. Therefore, \bar{Y}^{2} is the MLE of θ^{2}, by the invariance property of MLEs.
9.82. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a $\operatorname{Weibull}(r, \theta)$ population, where r is known and $\theta>0$ is unknown.

Note: The Rayleigh population distribution is a special case of the Weibull when $r=2$; in the notes (Example 9.18, pp 144), we determined the MLE of θ is

$$
\widehat{\theta}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}
$$

In Problem 9.81 (above), the exponential distribution is a special case of the Weibull when $r=1$; we determined the MLE of θ is

$$
\widehat{\theta}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

For the general Weibull (r, θ) population distribution, the MLE of θ (when r is known) is

$$
\widehat{\theta}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{r},
$$

the r th sample moment. We now show this. The likelihood function is given by

$$
L(\theta \mid \mathbf{y})=\frac{r y_{1}^{r-1}}{\theta} e^{-y_{1}^{r} / \theta} \times \frac{r y_{2}^{r-1}}{\theta} e^{-y_{2}^{r} / \theta} \times \cdots \times \frac{r y_{n}^{r-1}}{\theta} e^{-y_{n}^{r} / \theta}=\left(\frac{r}{\theta}\right)^{n}\left(\prod_{i=1}^{n} y_{i}^{r-1}\right) e^{-\sum_{i=1}^{n} y_{i}^{r} / \theta} .
$$

Note that we can write

$$
L(\theta \mid \mathbf{y})=\underbrace{\left(\frac{r}{\theta}\right)^{n} e^{-\sum_{i=1}^{n} y_{i}^{r} / \theta}}_{g(t, \theta)} \times \underbrace{\prod_{i=1}^{n} y_{i}^{r-1}}_{h\left(y_{1}, y_{2}, \ldots, y_{n}\right)}
$$

where $t=\sum_{i=1}^{n} y_{i}^{r}$. By the Factorization Theorem, it follows that $T=\sum_{i=1}^{n} Y_{i}^{r}$ is a sufficient statistic; this is part (a).
(b) The log-likelihood function is given by

$$
\begin{aligned}
\ln L(\theta \mid \mathbf{y}) & =\ln \left[\left(\frac{r}{\theta}\right)^{n}\left(\prod_{i=1}^{n} y_{i}^{r-1}\right) e^{-\sum_{i=1}^{n} y_{i}^{r} / \theta}\right] \\
& =\ln \left[\left(\frac{r}{\theta}\right)^{n}\right]+\ln \left(\prod_{i=1}^{n} y_{i}^{r}\right)+\ln \left(e^{-\sum_{i=1}^{n} y_{i}^{r} / \theta}\right) \\
& =n(\ln r-\ln \theta)+\ln \left(\prod_{i=1}^{n} y_{i}^{r}\right)-\frac{\sum_{i=1}^{n} y_{i}^{r}}{\theta} .
\end{aligned}
$$

The derivative of the log-likelihood function is given by

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \ln L(\theta \mid \mathbf{y}) & =-\frac{n}{\theta}+\frac{\sum_{i=1}^{n} y_{i}^{r}}{\theta^{2}} \stackrel{\text { set }}{=} 0 \\
& \Longrightarrow-n \theta+\sum_{i=1}^{n} y_{i}^{r}=0 \Longrightarrow \sum_{i=1}^{n} y_{i}^{r}=n \theta \Longrightarrow \widehat{\theta}=\frac{1}{n} \sum_{i=1}^{n} y_{i}^{r}
\end{aligned}
$$

Showing this first-order critical point $\widehat{\theta}$ maximizes $\ln L(\theta \mid \mathbf{y})$ is done in the same way as in the exponential and Rayleigh cases. The second derivative of the log-likelihood function is given by

$$
\frac{\partial^{2}}{\partial \theta^{2}} \ln L(\theta \mid \mathbf{y})=\frac{n}{\theta^{2}}-\frac{2 \sum_{i=1}^{n} y_{i}^{r}}{\theta^{3}}
$$

Note that

$$
\left.\frac{\partial^{2}}{\partial \theta^{2}} \ln L(\theta \mid \mathbf{y})\right|_{\theta=\widehat{\theta}}=\frac{n}{\widehat{\theta}^{2}}-\frac{2 \sum_{i=1}^{n} y_{i}^{r}}{\widehat{\theta}^{3}}=\frac{n \widehat{\theta}}{\widehat{\theta}^{3}}-\frac{2 n \widehat{\theta}}{\widehat{\theta}^{3}}=-\frac{n \widehat{\theta}}{\widehat{\theta}^{3}}=-\frac{n}{\widehat{\theta}^{2}}<0 .
$$

Therefore, $\widehat{\theta}$ maximizes $\ln L(\theta \mid \mathbf{y})$. The MLE of θ is

$$
\widehat{\theta}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{r}
$$

(c) The MLE $\widehat{\theta}$ above is the MVUE of θ (when r is known). First note that $\widehat{\theta}$ is a function of the sufficient statistic $T=\sum_{i=1}^{n} Y_{i}^{r}$. Now, let's show that it is an unbiased estimator of θ. We have

$$
E(\widehat{\theta})=E\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{r}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(Y_{i}^{r}\right) .
$$

The r th moment of $Y \sim \operatorname{Weibull}(r, \theta)$ is

$$
E\left(Y^{r}\right)=\int_{\mathbb{R}} y^{r} f_{Y}(y) d y=\int_{0}^{\infty} y^{r} \times \frac{r y^{r-1}}{\theta} e^{-y^{r} / \theta} d y
$$

In the last integral, let

$$
u=y^{r} \quad \Longrightarrow \quad d u=r y^{r-1} d y
$$

The limits on the integral do not change under this transformation. Therefore,
$E\left(Y^{r}\right)=\int_{0}^{\infty} y^{r} \times \frac{r y^{r-1}}{\theta} e^{-y^{r} / \theta} d y=\int_{0}^{\infty} u \frac{r y^{r-1}}{\theta} e^{-u / \theta} \frac{d u}{r y^{r-1}}=\int_{0}^{\infty} u \times \frac{1}{\theta} e^{-u / \theta} d u=E(U)$,
where $U \sim \operatorname{exponential}(\theta)$. Therefore $E\left(Y^{r}\right)=E(U)=\theta$. Therefore,

$$
E(\widehat{\theta})=\frac{1}{n} \sum_{i=1}^{n} \theta=\frac{1}{n}(n \theta)=\theta
$$

This proves $\widehat{\theta}$ is the MVUE of θ. It is a function of a sufficient statistic T and it is unbiased.

9.92. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a population with pdf

$$
f_{Y}(y)=\left\{\begin{array}{cl}
\frac{3 y^{2}}{\theta^{3}}, & 0 \leq y \leq \theta \\
0, & \text { otherwise }
\end{array}\right.
$$

where the population parameter $\theta>0$ is unknown. In Problem 9.63 (HW9), we calculated the likelihood function:

$$
L(\theta \mid \mathbf{y})=\left(\frac{3}{\theta^{3}}\right)^{n}\left(\prod_{i=1}^{n} y_{i}^{2}\right) I\left(0 \leq y_{(n)} \leq \theta\right) .
$$

We see the support depends on θ in the population pdf $f_{Y}(y)$ so $L(\theta \mid \mathbf{y})$ is not a differentiable function of θ. A graph of the likelihood function $L(\theta \mid \mathbf{y})$ is shown above. Note that

- For $\theta \geq y_{(n)}, L(\theta \mid \mathbf{y})=\left(\frac{3}{\theta^{3}}\right)^{n} \prod_{i=1}^{n} y_{i}^{2}$, which is a decreasing function of θ (see above).
- For $\theta<y_{(n)}, L(\theta \mid \mathbf{y})=0$.

Clearly, the MLE of θ is $\widehat{\theta}=Y_{(n)}$.
(b) In Problem 9.63 (HW9), we derived the pdf of $Y_{(n)}$ to be

$$
f_{Y_{(n)}}(y)=\left\{\begin{array}{cc}
\frac{3 n y^{3 n-1}}{\theta^{3 n}}, & 0 \leq y \leq \theta \\
0, & \text { otherwise }
\end{array}\right.
$$

Consider the function

$$
Q=\frac{Y_{n}}{\theta} .
$$

We will now show the distribution of Q is free of θ; i.e., Q is a pivotal quantity. The support of Q is

$$
R_{Q}=\{q: 0 \leq q \leq 1\} .
$$

Therefore, the pdf of Q is nonzero over $[0,1]$. For $0 \leq q \leq 1$, the cdf of Q is

$$
\begin{aligned}
F_{Q}(q)=P(Q \leq q)=P\left(\frac{Y_{(n)}}{\theta} \leq q\right) & =P\left(Y_{(n)} \leq q \theta\right) \\
& =\int_{0}^{q \theta} f_{Y_{(n)}}(y) d y \\
& =\int_{0}^{q \theta} \frac{3 n y^{3 n-1}}{\theta^{3 n}} d y \\
& =\frac{1}{\theta^{3 n}}\left(\left.y^{3 n}\right|_{0} ^{q \theta}\right)=\frac{(q \theta)^{3 n}}{\theta^{3 n}}=q^{3 n} .
\end{aligned}
$$

Summarizing,

$$
F_{Q}(q)=\left\{\begin{array}{cc}
0 & q<0 \\
q^{3 n}, & 0 \leq q \leq 1 \\
1, & q>1
\end{array}\right.
$$

Therefore, Q is a pivotal quantity because its distribution does not depend on θ. Taking derivatives, the pdf of Q is

$$
f_{Q}(q)=\left\{\begin{array}{cc}
3 n q^{3 n-1}, & 0 \leq q \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

We recognize $f_{Q}(q)$ as a beta pdf with $\alpha=3 n$ and $\beta=1$.
(c) Define

$$
\begin{aligned}
b_{3 n, 1,1-\alpha / 2} & =\text { lower } \alpha / 2 \text { quantile of beta }(3 n, 1) \\
b_{3 n, 1, \alpha / 2} & =\text { upper } \alpha / 2 \text { quantile of } \operatorname{beta}(3 n, 1)
\end{aligned}
$$

see the figure at the top of the previous page where I have graphed the beta $(3 n, 1) \mathrm{pdf}$. Because $Q \sim \operatorname{beta}(3 n, 1)$, we can write

$$
\begin{aligned}
1-\alpha & =P\left(b_{3 n, 1,1-\alpha / 2}<Q<b_{3 n, 1, \alpha / 2}\right) \\
& =\left(b_{3 n, 1,1-\alpha / 2}<\frac{Y_{(n)}}{\theta}<b_{3 n, 1, \alpha / 2}\right) \\
& =P\left(\frac{1}{b_{3 n, 1,1-\alpha / 2}}>\frac{\theta}{Y_{(n)}}>\frac{1}{b_{3 n, 1, \alpha / 2}}\right) \\
& =P\left(\frac{Y_{(n)}}{b_{3 n, 1,1-\alpha / 2}}>\theta>\frac{Y_{(n)}}{b_{3 n, 1, \alpha / 2}}\right)=P(\underbrace{\frac{Y_{(n)}}{b_{3 n, 1, \alpha / 2}}}_{\theta_{L}}<\theta<\underbrace{\frac{Y_{(n)}}{b_{3 n, 1,1-\alpha / 2}}}_{\theta_{U}}) .
\end{aligned}
$$

Therefore,

$$
\left(\frac{Y_{(n)}}{b_{3 n, 1, \alpha / 2}}, \frac{Y_{(n)}}{b_{3 n, 1,1-\alpha / 2}}\right)
$$

is a $100(1-\alpha) \%$ confidence interval for θ.
9.97. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a $\operatorname{geometric}(p)$ population distribution, where the success probability p is unknown $(0<p<1)$. In part (a), we want to find the MOM estimator of p. There is only 1 parameter in this population pdf, so to find the MOM estimator we only need one equation. The first population moment is

$$
E(Y)=\frac{1}{p}
$$

The first sample moment is

$$
\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\bar{Y} .
$$

Therefore, the MOM estimator of p is found by solving

$$
\frac{1}{p} \stackrel{\text { set }}{=} \bar{Y} \Longrightarrow \widehat{p}=\frac{1}{\bar{Y}} .
$$

(b) We now find the MLE. The likelihood function is

$$
\begin{aligned}
L(p \mid \mathbf{y})=\prod_{i=1}^{n} p_{Y}\left(y_{i} \mid p\right) & =p_{Y}\left(y_{1} \mid p\right) \times p_{Y}\left(y_{2} \mid p\right) \times \cdots \times p_{Y}\left(y_{n} \mid p\right) \\
& =(1-p)^{y_{1}-1} p \times(1-p)^{y_{2}-1} p \times \cdots \times(1-p)^{y_{n}-1} p \\
& =(1-p)^{\sum_{i=1}^{n} y_{i}-n} p^{n} .
\end{aligned}
$$

The log-likelihood function is

$$
\begin{aligned}
\ln L(p \mid \mathbf{y}) & =\ln \left[(1-p)^{\sum_{i=1}^{n} y_{i}-n} p^{n}\right] \\
& =\ln \left[(1-p)^{\sum_{i=1}^{n} y_{i}-n}\right]+\ln p^{n}=\left(\sum_{i=1}^{n} y_{i}-n\right) \ln (1-p)+n \ln p .
\end{aligned}
$$

The derivative of the log-likelihood function is

$$
\begin{aligned}
\frac{\partial}{\partial p} \ln L(p \mid \mathbf{y}) & =-\frac{\left(\sum_{i=1}^{n} y_{i}-n\right)}{1-p}+\frac{n}{p} \stackrel{\text { set }}{=} 0 \\
& \Longrightarrow-p\left(\sum_{i=1}^{n} y_{i}-n\right)+n(1-p)=0 \\
& \Longrightarrow-p \sum_{i=1}^{n} y_{i}+n p+n-n p=0 \\
& \Longrightarrow-p \sum_{i=1}^{n} y_{i}+n=0 \Longrightarrow n=p \sum_{i=1}^{n} y_{i} \Longrightarrow \hat{p}=\frac{n}{\sum_{i=1}^{n} y_{i}}=\frac{1}{\bar{y}}
\end{aligned}
$$

We now show this first-order critical point \widehat{p} maximizes $\ln L(p \mid \mathbf{y})$. The second derivative of the log-likelihood function is given by

$$
\frac{\partial^{2}}{\partial p^{2}} \ln L(p \mid \mathbf{y})=-\frac{\left(\sum_{i=1}^{n} y_{i}-n\right)}{(1-p)^{2}}-\frac{n}{p^{2}}
$$

Note that

$$
\begin{aligned}
\left.\frac{\partial^{2}}{\partial p^{2}} \ln L(p \mid \mathbf{y})\right|_{p=\frac{1}{\bar{y}}} & =-\frac{\left(\sum_{i=1}^{n} y_{i}-n\right)}{\left(1-\frac{1}{\bar{y}}\right)^{2}}-\frac{n}{\left(\frac{1}{\bar{y}}\right)^{2}} \\
& =-\frac{(n \bar{y}-n)}{\left(\frac{\bar{y}-1}{\bar{y}^{2}}\right)^{2}}-n \bar{y}^{2}=-\frac{n(\bar{y}-1)}{\left(\frac{\bar{y}-1}{\bar{y}^{2}}\right)^{2}}-n \bar{y}^{2}=-\frac{n \bar{y}^{2}}{\bar{y}-1}-n \bar{y}^{2}<0
\end{aligned}
$$

because $\bar{y}>1$. Therefore, $\hat{p}=1 / \bar{y}$ maximizes $\ln L(p \mid \mathbf{y})$. The MLE of p is

$$
\widehat{p}=\frac{1}{\bar{Y}}
$$

Therefore, the MOM estimator and MLE of p are the same in this example.
9.107. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from an exponential (θ) population distribution, where $\theta>0$ is unknown. In Problem 9.81, we already showed $\hat{\theta}=\bar{Y}$ is the MLE of θ. Therefore, the MLE of the reliability at time t, that is, $\bar{F}(t)=e^{-t / \theta}$, is $e^{-t / \bar{Y}}$, by invariance.
9.112. In this problem, $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from a Poisson (λ) population distribution, where $\lambda>0$ is unknown. In part (a), we want to show

$$
W_{n}=\frac{\bar{Y}-\lambda}{\sqrt{\bar{Y} / n}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)
$$

as $n \rightarrow \infty$. In this population, we know $\mu=E(Y)=\lambda$ and $\sigma^{2}=V(Y)=\lambda$. Therefore, from the CLT, we know

$$
U_{n}=\frac{\bar{Y}-\lambda}{\sqrt{\lambda / n}} \xrightarrow{d} \mathcal{N}(0,1)
$$

as $n \rightarrow \infty$. From the WLLN, we know

$$
\bar{Y} \xrightarrow{p} \lambda \Longrightarrow \frac{\bar{Y}}{\lambda} \xrightarrow{p} 1 \quad \Longrightarrow \quad V_{n}=\sqrt{\frac{\bar{Y}}{\lambda}} \xrightarrow{p} 1 ;
$$

the last two implications follow from continuity. Now, simply note that

$$
W_{n}=\frac{\bar{Y}-\lambda}{\sqrt{\bar{Y} / n}}=\frac{\frac{\bar{Y}-\lambda}{\sqrt{\lambda / n}}}{\sqrt{\frac{\bar{Y}}{\lambda}}}=\frac{U_{n}}{V_{n}} \xrightarrow{d} \mathcal{N}(0,1),
$$

by Slutsky's Theorem.
(b) Because

$$
W_{n}=\frac{\bar{Y}-\lambda}{\sqrt{\bar{Y} / n}} \xrightarrow{d} \mathcal{N}(0,1),
$$

as $n \rightarrow \infty$, we can write

$$
\begin{aligned}
1-\alpha \approx P\left(-z_{\alpha / 2}<\frac{\bar{Y}-\lambda}{\sqrt{\bar{Y} / n}}<z_{\alpha / 2}\right) & =P\left(-z_{\alpha / 2} \sqrt{\frac{\bar{Y}}{n}}<\bar{Y}-\lambda<z_{\alpha / 2} \sqrt{\frac{\bar{Y}}{n}}\right) \\
& =P\left(z_{\alpha / 2} \sqrt{\frac{\bar{Y}}{n}}>\lambda-\bar{Y}>-z_{\alpha / 2} \sqrt{\frac{\bar{Y}}{n}}\right) \\
& =P\left(\bar{Y}+z_{\alpha / 2} \sqrt{\frac{\bar{Y}}{n}}>\lambda>\bar{Y}-z_{\alpha / 2} \sqrt{\frac{\bar{Y}}{n}}\right) \\
& =P\left(\bar{Y}-z_{\alpha / 2} \sqrt{\frac{\bar{Y}}{n}}<\lambda<\bar{Y}+z_{\alpha / 2} \sqrt{\frac{\bar{Y}}{n}}\right) .
\end{aligned}
$$

This argument proves

$$
\left(\bar{Y}-z_{\alpha / 2} \sqrt{\frac{\bar{Y}}{n}}, \bar{Y}+z_{\alpha / 2} \sqrt{\frac{\bar{Y}}{n}}\right)
$$

is a large-sample $100(1-\alpha) \%$ confidence interval for the population mean λ.

