6.4. The amount of flour used is a random variable $Y \sim \operatorname{exponential}(\beta=4)$. The pdf of Y is shown below (left). The cost is described in terms of a function of Y; i.e., $U=h(Y)=3 Y+1$.
(a) Let's use the cdf technique to find the distribution of U. First, note that $y>0 \Longrightarrow u=$ $3 y+1>1$. Therefore, the support of U is $R_{U}=\{u: u>1\}$. For $u>1$, the cdf of U is

$$
F_{U}(u)=P(U \leq u)=P(3 Y+1 \leq u)=P\left(Y \leq \frac{u-1}{3}\right)=F_{Y}\left(\frac{u-1}{3}\right) .
$$

Recall the cdf of $Y \sim \operatorname{exponential}(\beta=4)$ is

$$
F_{Y}(y)=\left\{\begin{array}{cl}
0, & y \leq 0 \\
1-e^{-y / 4}, & y>0
\end{array}\right.
$$

Therefore, for $y>0 \Longleftrightarrow u>1$, the $c d f$ of $U=h(Y)=3 Y+1$ is

$$
F_{U}(u)=F_{Y}\left(\frac{u-1}{3}\right)=1-e^{-\left(\frac{u-1}{3}\right) / 4}=1-e^{-(u-1) / 12} .
$$

For $u>1$, the pdf of U is

$$
f_{U}(u)=\frac{d}{d u} F_{U}(u)=\frac{d}{d u}\left\{1-e^{-(u-1) / 12}\right\}=\frac{1}{12} e^{-(u-1) / 12} .
$$

Summarizing,

$$
f_{U}(u)=\left\{\begin{array}{cc}
\frac{1}{12} e^{-(u-1) / 12}, & u>1 \\
0, & \text { otherwise } .
\end{array}\right.
$$

The pdf of U is shown below (right). Note that $f_{U}(u)$ is an exponential(12) pdf but with a horizontal shift of 1 unit to the right; i.e., a "shifted-exponential distribution."

(b) Using the pdf from part (a), the mean of U is

$$
E(U)=\int_{\mathbb{R}} u f_{U}(u) d u=\int_{1}^{\infty} \frac{u}{12} e^{-(u-1) / 12} d u
$$

In the last integral, let $v=u-1$ so that $d v=d u$. Therefore,

$$
E(U)=\int_{1}^{\infty} \frac{u}{12} e^{-(u-1) / 12} d u=\int_{0}^{\infty}(v+1) \underbrace{\frac{1}{12} e^{-v / 12}}_{\operatorname{expo}(12) \operatorname{pdf}} d v=E(V+1)
$$

where $V \sim \operatorname{exponential}(12)$. We have $E(U)=E(V+1)=E(V)+1=12+1=13$. Of course, we would get the same answer by using the Law of the Unconscious Statistician; note that

$$
E(U)=E(3 Y+1)=3 E(Y)+1=3(4)+1=13
$$

6.5. The waiting time is a random variable $Y \sim \mathcal{U}(1,5)$. The pdf of Y is shown above (left). The cost is described in terms of a function of Y; i.e., $U=h(Y)=2 Y^{2}+3$.

Let's use the cdf technique to find the distribution of U. First, note that

$$
1<y<5 \Longrightarrow 5<u<53
$$

Therefore, the support of U is $R_{U}=\{u: 5<u<53\}$. For $5<u<53$, the cdf of U is

$$
F_{U}(u)=P(U \leq u)=P\left(2 Y^{2}+3 \leq u\right)=P\left(Y \leq \sqrt{\frac{u-3}{2}}\right)=F_{Y}\left(\sqrt{\frac{u-3}{2}}\right) .
$$

Recall the cdf of $Y \sim \mathcal{U}(1,5)$ is given by

$$
F_{Y}(y)=\left\{\begin{array}{cc}
0, & y \leq 1 \\
\frac{y-1}{4}, & 1<y<5 \\
1, & y \geq 5
\end{array}\right.
$$

Therefore, for $1<y<5 \Longleftrightarrow 5<u<53$, the cdf of $U=h(Y)=2 Y^{2}+3$ is

$$
F_{U}(u)=F_{Y}\left(\sqrt{\frac{u-3}{2}}\right)=\frac{\sqrt{\frac{u-3}{2}}-1}{4}
$$

For $5<u<53$, the pdf of U is

$$
f_{U}(u)=\frac{d}{d u} F_{U}(u)=\frac{d}{d u}\left(\frac{\sqrt{\frac{u-3}{2}}-1}{4}\right)=\frac{1}{8}\left(\frac{u-3}{2}\right)^{-1 / 2}\left(\frac{1}{2}\right) .
$$

Summarizing,

$$
f_{U}(u)=\left\{\begin{array}{cl}
\frac{1}{16}\left(\frac{u-3}{2}\right)^{-1 / 2}, & 5<u<53 \\
0, & \text { otherwise }
\end{array}\right.
$$

The pdf of U is shown at the top of the last page (right).
6.10. The support of $\left(Y_{1}, Y_{2}\right)$ is the set $R=\left\{\left(y_{1}, y_{2}\right): 0 \leq y_{2} \leq y_{1}<\infty\right\}$; this is the triangular region shown below. The upper boundary line is $y_{2}=y_{1}$. The joint pdf $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ is a three-dimensional function which takes the value $e^{-y_{1}}$ over this region and is otherwise equal to zero.

(a) We want to find the pdf of $U=Y_{1}-Y_{2}$. We will use the cdf technique. First, observe that

$$
y_{1} \geq y_{2} \geq 0 \Longrightarrow u=h\left(y_{1}, y_{2}\right)=y_{1}-y_{2} \geq 0 .
$$

Therefore, the support of $U=h\left(Y_{1}, Y_{2}\right)=Y_{1}-Y_{2}$ is $R_{U}=\{u: u \geq 0\}$. For $u \geq 0$, the cdf of U is

$$
\begin{aligned}
F_{U}(u)=P(U \leq u) & =P\left(Y_{1}-Y_{2} \leq u\right) \\
& =\iint_{\left(y_{1}, y_{2}\right) \in B} f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}=\iint_{\left(y_{1}, y_{2}\right) \in B} e^{-y_{1}} d y_{1} d y_{2},
\end{aligned}
$$

where the set $B=\left\{\left(y_{1}, y_{2}\right): y_{1} \geq 0, y_{2} \geq 0, y_{1}-y_{2} \leq u\right\}$. The region B is shown at the top of this page. Note that the boundary of B is

$$
y_{1}-y_{2}=u \Longrightarrow y_{2}=y_{1}-u
$$

a linear function of y_{1} with slope 1 and intercept $-u$. The limits in the double integral (on the preceding page) come from this picture.

For $u \geq 0$, the cdf of U is

$$
\begin{aligned}
F_{U}(u)=P(U \leq u) & =\int_{y_{2}=0}^{\infty} \int_{y_{1}=y_{2}}^{y_{2}+u} e^{-y_{1}} d y_{1} d y_{2} \\
& =\left.\int_{y_{2}=0}^{\infty}\left(-e^{-y_{1}}\right)\right|_{y_{1}=y_{2}} ^{y_{2}+u} d y_{2} \\
& =\int_{y_{2}=0}^{\infty}\left[e^{-y_{2}}-e^{-\left(y_{2}+u\right)}\right] d y_{2}=\underbrace{\int_{y_{2}=0}^{\infty} e^{-y_{2}} d y_{2}}_{=1}-\int_{y_{2}=0}^{\infty} e^{-\left(y_{2}+u\right)} d y_{2}
\end{aligned}
$$

The first integral above is 1 because $e^{-y_{2}}$ is the exponential(1) pdf and we are integrating it over $(0, \infty)$. The second integral is

$$
\int_{y_{2}=0}^{\infty} e^{-\left(y_{2}+u\right)} d y_{2}=-\left.e^{-\left(y_{2}+u\right)}\right|_{y_{2}=0} ^{\infty}=0+e^{-u}=e^{-u}
$$

Therefore, for $u \geq 0$, the cdf of U is $F_{U}(u)=1-e^{-u}$. Summarizing,

$$
F_{U}(u)=\left\{\begin{array}{cc}
0, & u<0 \\
1-e^{-u}, & u \geq 0
\end{array}\right.
$$

We recognize this as an exponential(1) cdf; i.e., $U=Y_{1}-Y_{2} \sim \operatorname{exponential(1).~For~} u \geq 0$, the pdf of U is

$$
f_{U}(u)=\frac{d}{d u} F_{U}(u)=\frac{d}{d u}\left(1-e^{-u}\right)=e^{-u}
$$

Summarizing,

$$
f_{U}(u)=\left\{\begin{array}{cc}
e^{-u}, & u \geq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

This is the pdf of $U \sim \operatorname{exponential(1);~i.e.,~an~exponential~pdf~with~mean~} \beta=1$.
(b) Based on our knowledge of the exponential distribution, we know

$$
E(U)=1 \quad \text { and } \quad V(U)=1 .
$$

Comparing with Exercise 5.108, these are the same answers you would get if you calculated $E(U)=E\left(Y_{1}-Y_{2}\right)$ and $V(U)=V\left(Y_{1}-Y_{2}\right)$ by using the joint pdf of Y_{1} and Y_{2}. To find $E\left(Y_{1}-Y_{2}\right)$, we would calculate

$$
E\left(Y_{1}-Y_{2}\right)=\iint_{\left(y_{1}, y_{2}\right) \in R}\left(y_{1}-y_{2}\right) f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}=\int_{y_{1}=0}^{\infty} \int_{y_{2}=y_{1}}^{\infty}\left(y_{1}-y_{2}\right) e^{-y_{1}} d y_{2} d y_{1} .
$$

To get $V\left(Y_{1}-Y_{2}\right)$, we could first calculate

$$
E\left[\left(Y_{1}-Y_{2}\right)^{2}\right]=\int_{\left(y_{1}, y_{2}\right) \in R}\left(y_{1}-y_{2}\right)^{2} f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}=\int_{y_{1}=0}^{\infty} \int_{y_{2}=y_{1}}^{\infty}\left(y_{1}-y_{2}\right)^{2} e^{-y_{1}} d y_{2} d y_{1}
$$

and then use the variance computing formula

$$
V\left(Y_{1}-Y_{2}\right)=E\left[\left(Y_{1}-Y_{2}\right)^{2}\right]-\left[E\left(Y_{1}-Y_{2}\right)\right]^{2} .
$$

We could also calculate $V\left(Y_{1}-Y_{2}\right)$ by using

$$
V\left(Y_{1}-Y_{2}\right)=V\left(Y_{1}\right)+V\left(Y_{2}\right)-2 \operatorname{Cov}\left(Y_{1}, Y_{2}\right) .
$$

As an exercise, try to calculate $E(U)=E\left(Y_{1}-Y_{2}\right)$ and $V(U)=V\left(Y_{1}-Y_{2}\right)$ by doing what is described above. It will be a lot of work, but it is a good review of Chapter 5 calculations. From the Law of the Unconscious Statistician, we know $E\left(Y_{1}-Y_{2}\right)=1$ and $V\left(Y_{1}-Y_{2}\right)=1$.
6.14. Because Y_{1} and Y_{2} are independent (by assumption), the joint pdf of Y_{1} and Y_{2}, for $0 \leq y_{1} \leq 1$ and $0 \leq y_{2} \leq 1$, is given by

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{Y_{1}}\left(y_{1}\right) f_{Y_{2}}\left(y_{2}\right)=6 y_{1}\left(1-y_{1}\right) \times 3 y_{2}^{2}=18 y_{1}\left(1-y_{1}\right) y_{2}^{2} .
$$

Summarizing,

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cc}
18 y_{1}\left(1-y_{1}\right) y_{2}^{2}, & 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

The support of $\left(Y_{1}, Y_{2}\right)$ is the set $R=\left\{\left(y_{1}, y_{2}\right): 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1\right\}$; i.e., the unit square. This region is shown at the top of the next page (left). The joint pdf $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ is a three-dimensional function which takes the value $18 y_{1}\left(1-y_{1}\right) y_{2}^{2}$ over this region and is otherwise equal to zero.

We want to find the pdf of $U=Y_{1} Y_{2}$. We will use the cdf technique. First, observe that

$$
0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1 \Longrightarrow u=h\left(y_{1}, y_{2}\right)=y_{1} y_{2} \in[0,1]
$$

Therefore, the support of $U=h\left(Y_{1}, Y_{2}\right)=Y_{1} Y_{2}$ is $R_{U}=\{u: 0 \leq u \leq 1\}$. For $0 \leq u \leq 1$, the cdf of U is

$$
\begin{aligned}
F_{U}(u)=P(U \leq u) & =P\left(Y_{1} Y_{2} \leq u\right) \\
& =\iint_{\left(y_{1}, y_{2}\right) \in B} f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}=\iint_{\left(y_{1}, y_{2}\right) \in B} 18 y_{1}\left(1-y_{1}\right) y_{2}^{2} d y_{1} d y_{2},
\end{aligned}
$$

where the set $B=\left\{\left(y_{1}, y_{2}\right): 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1, y_{1} y_{2} \leq u\right\}$. The region B is shown at the top of this page (right). Note that the boundary of B is

$$
y_{1} y_{2}=u \Longrightarrow y_{2}=\frac{u}{y_{1}}
$$

a decreasing curvilinear function of y_{1}. The limits in the double integral above come from this picture.

Note: In this situation, it is much easier to integrate the joint pdf $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ over the complement of the shaded region above (right). That is,

$$
F_{U}(u)=P(U \leq u)=P\left(Y_{1} Y_{2} \leq u\right)=1-P\left(Y_{1} Y_{2}>u\right) .
$$

The reason it is easier is that we can get the limits of integration easier (i.e., by integrating over the white region instead of the grey region). We calculate $P\left(Y_{1} Y_{2}>u\right)$ by integrating the joint pdf over the white region.

For $0 \leq u \leq 1$, we have

$$
\begin{aligned}
P\left(Y_{1} Y_{2}>u\right) & =\int_{y_{2}=u}^{1} \int_{y_{1}=u / y_{2}}^{1} 18 y_{1}\left(1-y_{1}\right) y_{2}^{2} d y_{1} d y_{2} \\
& =\left.\int_{y_{2}=u}^{1} 18 y_{2}^{2}\left(\frac{y_{1}^{2}}{2}-\frac{y_{1}^{3}}{3}\right)\right|_{y_{1}=u / y_{2}} ^{1} d y_{2} \\
& =\left.\int_{y_{2}=u}^{1} 3 y_{2}^{2}\left(3 y_{1}^{2}-2 y_{1}^{3}\right)\right|_{y_{1}=u / y_{2}} ^{1} d y_{2} \\
& =\int_{y_{2}=u}^{1} 3 y_{2}^{2}\left(1-\frac{3 u^{2}}{y_{2}^{2}}+\frac{2 u^{3}}{y_{2}^{3}}\right) d y_{2} \\
& =\int_{y_{2}=u}^{1}\left(3 y_{2}^{2}-9 u^{2}+\frac{6 u^{3}}{y_{2}}\right) d y_{2} \\
& =\left.\left(y_{2}^{3}-9 u^{2} y_{2}+6 u^{3} \ln y_{2}\right)\right|_{y_{2}=u} ^{1} \\
& =1-9 u^{2}+0-u^{3}+9 u^{3}-6 u^{3} \ln u=1-9 u^{2}+8 u^{3}-6 u^{3} \ln u .
\end{aligned}
$$

Therefore, for $0 \leq u \leq 1$, we have

$$
F_{U}(u)=1-P\left(Y_{1} Y_{2}>u\right)=1-\left(1-9 u^{2}+8 u^{3}-6 u^{3} \ln u\right)=9 u^{2}-8 u^{3}+6 u^{3} \ln u
$$

Summarizing, the cdf of U is

$$
F_{U}(u)=\left\{\begin{array}{cc}
0, & u<0 \\
9 u^{2}-8 u^{3}+6 u^{3} \ln u, & 0 \leq u \leq 1 \\
1, & u>1
\end{array}\right.
$$

For $0 \leq u \leq 1$, the pdf of U is

$$
\begin{aligned}
f_{U}(u)=\frac{d}{d u} F_{U}(u) & =\frac{d}{d u}\left(9 u^{2}-8 u^{3}+6 u^{3} \ln u\right) \\
& =18 u-24 u^{2}+\left(18 u^{2} \ln u+6 u^{2}\right) \\
& =18 u-18 u^{2}+18 u^{2} \ln u=18 u(1-u+u \ln u)
\end{aligned}
$$

Summarizing,

$$
f_{U}(u)=\left\{\begin{array}{cl}
18 u(1-u+u \ln u), & 0 \leq u \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

A graph of this pdf appears at the top of the last page. I used R to ensure this pdf is valid; i.e., it integrates to 1.

```
> integrand <- function(u){18*u*(1-u+u*log(u))}
> integrate(integrand,lower=0,upper=1)
1 with absolute error < 3.7e-05
```

6.19. This exercise asks you establish a relationship between two new families of distributions; the power family and the Pareto family of distributions. Suppose $Y \sim \operatorname{Pareto}(\alpha, \beta)$, where $\alpha>0$ and $\beta>0$. The cdf of Y is given in Exercise 6.18 ; it is

$$
F_{Y}(y)=\left\{\begin{array}{cl}
0, & y<\beta \\
1-\left(\frac{\beta}{y}\right)^{\alpha}, & y \geq \beta
\end{array}\right.
$$

Consider the function

$$
X=h(Y)=\frac{1}{Y}
$$

Note that

$$
y \geq \beta>0 \quad \Longrightarrow \quad 0 \leq \frac{1}{y} \leq \frac{1}{\beta}
$$

Therefore, the support of X is $R_{X}=\{x: 0 \leq x \leq 1 / \beta\}$. For $0 \leq x \leq 1 / \beta$, the cdf of X is

$$
\begin{aligned}
F_{X}(x)=P(X \leq x)=P\left(\frac{1}{Y} \leq x\right) & =P\left(Y>\frac{1}{x}\right) \\
& =1-P\left(Y \leq \frac{1}{x}\right) \\
& =1-F_{Y}\left(\frac{1}{x}\right)=1-\left[1-\left(\frac{\beta}{1 / x}\right)^{\alpha}\right]=(x \beta)^{\alpha}
\end{aligned}
$$

Summarizing,

$$
F_{X}(x)=\left\{\begin{array}{cc}
0, & x<0 \\
(x \beta)^{\alpha}, & 0 \leq x \leq 1 / \beta \\
1, & x>1 / \beta
\end{array}\right.
$$

Letting $\theta=1 / \beta$, we have

$$
F_{X}(x)=\left\{\begin{array}{cc}
0, & x<0 \\
\left(\frac{x}{\theta}\right)^{\alpha}, & 0 \leq x \leq \theta \\
1, & x>\theta
\end{array}\right.
$$

That is, X follows a power family distribution with parameters α and $\theta=1 / \beta$.
6.20. Recall the pdf of $Y \sim \mathcal{U}(0,1)$ is

$$
f_{Y}(y)= \begin{cases}1, & 0<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) With $w=y^{2}$, note that $0<y<1 \Longrightarrow 0<w<1$ as well. Therefore, the support of $W=Y^{2}$ is $R_{W}=\{0<w<1\}$. From Example 6.3 (notes), we derived a general expression for the pdf of $W=Y^{2}$. The pdf of W, where nonzero, is given by

$$
f_{W}(w)=\frac{1}{2 \sqrt{w}}\left[f_{Y}(\sqrt{w})+f_{Y}(-\sqrt{w})\right]
$$

Note that for $0<w<1$,

$$
\begin{aligned}
f_{Y}(\sqrt{w}) & =1 \\
f_{Y}(-\sqrt{w}) & =0 .
\end{aligned}
$$

Therefore, for $0<w<1$,

$$
f_{W}(w)=\frac{1}{2 \sqrt{w}}(1+0)=\frac{1}{2 \sqrt{w}} .
$$

Summarizing, the pdf of W is

$$
f_{W}(w)=\left\{\begin{array}{cl}
\frac{1}{2 \sqrt{w}}, & 0<w<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

It is easy to show this pdf is valid (i.e., it integrates to 1).
(b) We could use the cdf technique or the method of transformations to derive the pdf of $W=\sqrt{Y}$. I'll use the cdf technique. First, note that $0<y<1 \Longrightarrow 0<w<1$ as well. Therefore, the support of W is $R_{W}=\{0<w<1\}$. The cdf of W, for $0<w<1$, is given by

$$
F_{W}(w)=P(W \leq w)=P(\sqrt{Y} \leq w)=P\left(Y \leq w^{2}\right)=F_{Y}\left(w^{2}\right),
$$

where $F_{Y}(\cdot)$ is the cdf of $Y \sim \mathcal{U}(0,1)$. Recall that

$$
F_{Y}(y)= \begin{cases}0, & y \leq 0 \\ y, & 0<y<1 \\ 1, & y \geq 1\end{cases}
$$

Therefore, for $0<w<1$, the cdf of W is

$$
F_{W}(w)=F_{Y}\left(w^{2}\right)=w^{2} .
$$

Summarizing,

$$
F_{W}(w)=\left\{\begin{array}{cl}
0, & w \leq 0 \\
w^{2}, & 0<w<1 \\
1, & w \geq 1
\end{array}\right.
$$

We find the pdf of W by taking derivatives. For $0<w<1$, we have

$$
f_{W}(w)=\frac{d}{d w} F_{W}(w)=\frac{d}{d w} w^{2}=2 w .
$$

Summarizing, the pdf of W is

$$
f_{W}(w)=\left\{\begin{array}{cl}
2 w, & 0<w<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Note that $W=\sqrt{Y}$ follows a beta distribution with $\alpha=2$ and $\beta=1$. Interesting!
Note: The pdf of $W=Y^{2}$ is shown above (left); the pdf of $W=\sqrt{Y}$ is shown above (right).
6.26. The pdf of $Y \sim \operatorname{Weibull}(m, \alpha)$ is

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{m}{\alpha} y^{m-1} e^{-y^{m} / \alpha}, & y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

where $m>0$ and $\alpha>0$.
(a) To find the pdf of $U=h(Y)=Y^{m}$, we will use the transformation method. Note that

$$
y>0 \quad \Longrightarrow \quad u=y^{m}>0
$$

Therefore, the support of U is $R_{U}=\{u: u>0\}$. In general, the function $u=h(y)=y^{m}$ is not $1: 1$ over $\mathbb{R}=(-\infty, \infty)$. However, it is $1: 1$ over $R_{Y}=\{y: y>0\}$, the support of Y. Therefore, we can use the transformation method.

The inverse transformation is found as follows:

$$
u=h(y)=y^{m} \quad \Longrightarrow \quad y=u^{\frac{1}{m}}=h^{-1}(u)
$$

Also, the derivative of the inverse transformation is

$$
\frac{d}{d u} h^{-1}(u)=\frac{d}{d u} u^{\frac{1}{m}}=\frac{1}{m} u^{\frac{1}{m}-1}
$$

Therefore, for $u>0$, the pdf of U is

$$
\begin{aligned}
f_{U}(u) & =f_{Y}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right| \\
& =\frac{m}{\alpha}\left(u^{\frac{1}{m}}\right)^{m-1} e^{-\left(u^{\frac{1}{m}}\right)^{m} / \alpha} \times\left|\frac{1}{m} u^{\frac{1}{m}-1}\right|=\frac{1}{\alpha} u^{1-\frac{1}{m}} e^{-u / \alpha} u^{\frac{1}{m}-1}=\frac{1}{\alpha} e^{-u / \alpha}
\end{aligned}
$$

Summarizing, the pdf of $U=h(Y)=Y^{m}$ is

$$
f_{U}(u)=\left\{\begin{array}{cc}
\frac{1}{\alpha} e^{-u / \alpha}, & u>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

We recognize this as an exponential pdf with mean α i.e., $U \sim \operatorname{exponential}(\alpha)$.
(b) In this part, we want to derive a general expression for the k th moment of a Weibull random variable $Y \sim \operatorname{Weibull}(m, \alpha)$. We can do this in two ways. First, we can calculate

$$
E\left(Y^{k}\right)=\int_{\mathbb{R}} y^{k} f_{Y}(y) d y
$$

i.e., by using the distribution of Y. Second, we can note that

$$
Y^{k}=\left(U^{\frac{1}{m}}\right)^{k}=U^{\frac{k}{m}}
$$

and calculate

$$
E\left(Y^{k}\right)=E\left(U^{\frac{k}{m}}\right)=\int_{\mathbb{R}} u^{\frac{k}{m}} f_{U}(u) d u
$$

i.e., by using the distribution of U. The Law of the Unconscious Statistician guarantees that both answers will be the same.

Let's do the second calculation; because $U \sim \operatorname{exponential}(\alpha)$, we have

$$
E\left(Y^{k}\right)=E\left(U^{\frac{k}{m}}\right)=\int_{0}^{\infty} u^{\frac{k}{m}} \times \frac{1}{\alpha} e^{-u / \alpha} d u=\frac{1}{\alpha} \int_{0}^{\infty} u^{\left(\frac{k}{m}+1\right)-1} e^{-u / \alpha} d u
$$

We recognize

$$
u^{\left(\frac{k}{m}+1\right)-1} e^{-u / \alpha}
$$

as a gamma kernel with shape parameter $\frac{k}{m}+1$ and scale parameter α. Therefore, the last integral

$$
\int_{0}^{\infty} u^{\left(\frac{k}{m}+1\right)-1} e^{-u / \alpha} d u=\Gamma\left(\frac{k}{m}+1\right) \alpha^{\frac{k}{m}+1}
$$

Therefore, we have

$$
E\left(Y^{k}\right)=E\left(U^{\frac{k}{m}}\right)=\frac{1}{\alpha} \Gamma\left(\frac{k}{m}+1\right) \alpha^{\frac{k}{m}+1}=\alpha^{\frac{k}{m}} \Gamma\left(\frac{k}{m}+1\right)
$$

Note: When $k=1$, we have the mean of Y; this is

$$
E(Y)=\alpha^{\frac{1}{m}} \Gamma\left(\frac{1}{m}+1\right)
$$

The second moment of Y arises when $k=2$; we have

$$
E\left(Y^{2}\right)=\alpha^{\frac{2}{m}} \Gamma\left(\frac{2}{m}+1\right)
$$

The variance of $Y \sim \operatorname{Weibull}(m, \alpha)$ is therefore

$$
\begin{aligned}
V(Y)=E\left(Y^{2}\right)-[E(Y)]^{2} & =\alpha^{\frac{2}{m}} \Gamma\left(\frac{2}{m}+1\right)-\left[\alpha^{\frac{1}{m}} \Gamma\left(\frac{1}{m}+1\right)\right]^{2} \\
& =\alpha^{\frac{2}{m}}\left\{\Gamma\left(\frac{2}{m}+1\right)-\left[\Gamma\left(\frac{1}{m}+1\right)\right]^{2}\right\}
\end{aligned}
$$

These can be calculated numerically in R . For example, if $m=2$ and $\alpha=10$, then

```
>m = 2
> alpha = 10
> mean.Y = (alpha)^(1/m)*gamma((1/m)+1)
> var.Y = (alpha)^ (2/m)*(gamma ((2/m)+1)-(gamma ((1/m)+1) )^2)
> mean.Y
[1] 2.802496
> var. Y
[1] 2.146018
```

6.30. The pdf of $I \sim \mathcal{U}(9,11)$ is

$$
f_{I}(i)= \begin{cases}\frac{1}{2}, & 9<i<11 \\ 0, & \text { otherwise }\end{cases}
$$

To find the pdf of $P=h(I)=2 I^{2}$, we will use the transformation method. Note that

$$
9<i<11 \quad \Longrightarrow \quad 162<p<242
$$

Therefore, the support of P is $R_{P}=\{p: 162<p<242\}$. In general, the function $p=h(i)=2 i^{2}$ is not $1: 1$ over $\mathbb{R}=(-\infty, \infty)$. However, it is $1: 1$ over $R_{I}=\{i: 9<i<11\}$, the support of I. Therefore, we can use the transformation method.

The inverse transformation is found as follows:

$$
p=h(i)=2 i^{2} \Longrightarrow \quad i=\sqrt{\frac{p}{2}}=h^{-1}(p)
$$

The derivative of the inverse transformation is

$$
\frac{d}{d p} h^{-1}(p)=\frac{d}{d p} \sqrt{\frac{p}{2}}=\frac{1}{2}\left(\frac{p}{2}\right)^{-1 / 2} \frac{1}{2}=\frac{1}{4} \sqrt{\frac{2}{p}}
$$

Therefore, for $162<p<242$, the pdf of P is

$$
f_{P}(p)=f_{I}\left(h^{-1}(p)\right)\left|\frac{d}{d p} h^{-1}(p)\right|=\frac{1}{2} \times\left|\frac{1}{4} \sqrt{\frac{2}{p}}\right|=\frac{\sqrt{2}}{8} \frac{1}{\sqrt{p}} .
$$

Summarizing, the pdf of $P=h(I)=2 I^{2}$ is

$$
f_{P}(p)=\left\{\begin{array}{cc}
\frac{\sqrt{2}}{8} \frac{1}{\sqrt{p}}, & 162<p<242 \\
0, & \text { otherwise }
\end{array}\right.
$$

I used R to ensure this pdf is valid; i.e., it integrates to 1 .
> integrand <- function(p) \{(sqrt(2)/8)*(1/sqrt(p))\}
> integrate(integrand,lower=162,upper=242)
1 with absolute error < 1.1e-14
The pdf of $Y \sim \mathcal{U}(9,11)$ and the pdf of $P \sim f_{P}(p)$ are shown above.
6.31. The support is $R=\left\{\left(y_{1}, y_{2}\right): y_{1}>0, y_{2}>0\right\}$, the entire first quadrant. See the picture on the next page (left). The joint pdf $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ is a three-dimensional function which takes the value $\frac{1}{8} y_{1} e^{-\left(y_{1}+y_{2}\right) / 2}$ over this region and is otherwise equal to zero.

To find the pdf of $U=Y_{2} / Y_{1}$, we will use the cdf technique. First, observe that

$$
y_{1}>0, y_{2}>0 \Longrightarrow u=h\left(y_{1}, y_{2}\right)=\frac{y_{2}}{y_{1}}>0
$$

Therefore, the support of $U=h\left(Y_{1}, Y_{2}\right)=Y_{2} / Y_{1}$ is $R_{U}=\{u: u>0\}$. For $u>0$, the cdf of U is

$$
F_{U}(u)=P(U \leq u)=P\left(\frac{Y_{2}}{Y_{1}} \leq u\right)=\int_{\left(y_{1}, y_{2}\right) \in B} \int_{8} \frac{1}{8} y_{1} e^{-\left(y_{1}+y_{2}\right) / 2} d y_{1} d y_{2}
$$

where the set $B=\left\{\left(y_{1}, y_{2}\right): y_{1}>0, y_{2}>0, \frac{y_{2}}{y_{1}} \leq u\right\}$. The region B is shown at the top of this page (right). Note that the boundary of B is

$$
\frac{y_{2}}{y_{1}}=u \Longrightarrow y_{2}=u y_{1},
$$

a linear function of y_{1} with intercept 0 and slope $u>0$. The limits in the double integral above come from this picture.

For $u>0$, the cdf of U is

$$
\begin{aligned}
F_{U}(u)=P(U \leq u) & =\int_{y_{1}=0}^{\infty} \int_{y_{2}=0}^{u y_{1}} \frac{1}{8} y_{1} e^{-\left(y_{1}+y_{2}\right) / 2} d y_{2} d y_{1} \\
& =\frac{1}{8} \int_{y_{1}=0}^{\infty} y_{1} e^{-y_{1} / 2}\left(\int_{y_{2}=0}^{u y_{1}} e^{-y / 2} d y_{2}\right) d y_{1} \\
& =\frac{1}{8} \int_{y_{1}=0}^{\infty} y_{1} e^{-y_{1} / 2}\left(-\left.2 e^{-y / 2}\right|_{0} ^{u y_{2}}\right) d y_{1} \\
& =\frac{1}{4} \int_{y_{1}=0}^{\infty} y_{1} e^{-y_{1} / 2}\left(1-e^{-u y_{1} / 2}\right) d y_{1} \\
& =\frac{1}{4}\left[\int_{y_{1}=0}^{\infty} y_{1} e^{-y_{1} / 2} d y_{1}-\int_{y_{1}=0}^{\infty} y_{1} e^{-y_{1}(1+u) / 2} d y_{1}\right] .
\end{aligned}
$$

Both integrals involve gamma kernels and are over $(0, \infty)$. The first integrand is $y_{1} e^{-y_{1} / 2}$, a gamma kernel with shape 2 and scale 2 . The second integrand is $y_{1} e^{-y_{1}(1+u) / 2}$, a gamma kernel

with shape 2 and scale $2 /(1+u)$. Therefore, for $u>0$,

$$
F_{U}(u)=P(U \leq u)=\frac{1}{4}\left[\Gamma(2) 2^{2}-\Gamma(2)\left(\frac{2}{1+u}\right)^{2}\right]=1-\left(\frac{1}{1+u}\right)^{2} .
$$

Summarizing,

$$
F_{U}(u)=\left\{\begin{array}{cl}
0, & u \leq 0 \\
1-\left(\frac{1}{1+u}\right)^{2}, & u>0
\end{array}\right.
$$

For $u>0$, the pdf of U is

$$
f_{U}(u)=\frac{d}{d u} F_{U}(u)=\frac{d}{d u}\left[1-\left(\frac{1}{1+u}\right)^{2}\right]=\frac{2}{(1+u)^{3}} .
$$

Summarizing,

$$
f_{U}(u)=\left\{\begin{array}{cc}
\frac{2}{(1+u)^{3}}, & u>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

A graph of $f_{U}(u)$ is shown above. I used R to ensure this pdf is valid; i.e., it integrates to 1 .
> integrand <- function(u) $\left\{2 /(1+u)^{\wedge} 3\right\}$
> integrate(integrand,lower=0, upper=Inf)
1 with absolute error < 1.1e-14
6.33. The pdf of Y is

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{3}{2} y^{2}+y, & 0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

To find the pdf of $U=h(Y)=5-Y / 2$, we will use the transformation method. Note that

$$
0 \leq y \leq 1 \quad \Longrightarrow \quad 4.5 \leq u \leq 5
$$

Therefore, the support of U is $R_{U}=\{u: 4.5 \leq u \leq 5\}$. Note $u=h(y)=5-y / 2$ is a linear function and hence is $1: 1$. Therefore, we can use the transformation method.

The inverse transformation is found as follows:

$$
u=h(y)=5-y / 2 \Longrightarrow y=2(5-u)=h^{-1}(u) .
$$

The derivative of the inverse transformation is

$$
\frac{d}{d u} h^{-1}(u)=\frac{d}{d u}[2(5-u)]=-2 .
$$

Therefore, for $4.5 \leq u \leq 5$, the pdf of U is

$$
f_{U}(u)=f_{Y}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right|=\left\{\frac{3}{2}[2(5-u)]^{2}+2(5-u)\right\} \times|-2|=12(5-u)^{2}+4(5-u) .
$$

Summarizing, the pdf of $U=h(Y)=5-Y / 2$ is

$$
f_{U}(u)=\left\{\begin{array}{cc}
12(5-u)^{2}+4(5-u), & 4.5 \leq u \leq 5 \\
0, & \text { otherwise }
\end{array}\right.
$$

I used R to ensure this pdf is valid; i.e., it integrates to 1 .

```
> integrand <- function(u){12*(5-u)^2 + 4*(5-u)}
> integrate(integrand,lower=4.5,upper=5)
1 with absolute error < 1.1e-14
```

The pdf of Y and the pdf of $U=h(Y)=5-Y / 2$ are shown above.

