
STAT 512 HW2 SOLUTIONS

6.34. A Rayleigh random variable Y has pdf

fY (y) =


2y

θ
e−y

2/θ, y > 0

0, otherwise.

Note that this pdf arises when

fY (y) =


m

θ
ym−1e−y

m/θ, y > 0

0, otherwise,

and m = 2. In other words, the Rayleigh(θ) distribution is a special case of the Weibull(m, θ)
distribution with m = 2. We proved the general result

Y ∼Weibull(m, θ) =⇒ U = h(Y ) = Y m ∼ exponential(θ)

in Exercise 6.26 (HW1) by using the transformation method. Therefore, arguing

Y ∼ Rayleigh(θ) =⇒ U = h(Y ) = Y 2 ∼ exponential(θ)

is a special case of this general argument when m = 2. For fun, let’s prove this result (when
m = 2) by using the cdf technique and the mgf technique (in other words, all three methods
“work” in this instance).

CDF technique: Let’s first derive the cdf of Y ∼ Rayleigh(θ). When y ≤ 0, the cdf

FY (y) =

∫ y

−∞
fY (t)dt =

∫ y

−∞
0dt = 0.

For y > 0, the cdf

FY (y) =

∫ y

−∞
fY (t)dt =

∫ 0

−∞
0dt︸ ︷︷ ︸

= 0

+

∫ y

0

2t

θ
e−t

2/θdt =

∫ y

0

2t

θ
e−t

2/θdt.

In the last integral, let
u = t2 =⇒ du = 2t dt.

The limits on the integral change under this transformation. Note that

t : 0→ y =⇒ u : 0→ y2.

Therefore, for y > 0,

FY (y) =

∫ y

0

2t

θ
e−t

2/θdt =

∫ y2

0

2t

θ
e−u/θ

du

2t

=

∫ y2

0

1

θ
e−u/θ du

=
1

θ

(
−θe−u/θ

∣∣∣y2
0

)
= e−u/θ

∣∣∣0
y2

= 1− e−y2/θ.

Summarizing,

FY (y) =

{
0, y ≤ 0

1− e−y2/θ, y > 0.
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We are now ready to derive the cdf of U = Y 2. For u > 0, it is

FU (u) = P (U ≤ u) = P (Y 2 ≤ u)

= P (Y ≤
√
u)

= FY (
√
u) = 1− e−(

√
u)2/θ = 1− e−u/θ.

Summarizing,

FU (u) =

{
0, u ≤ 0

1− e−u/θ, u > 0.

We recognize this as the cdf of U ∼ exponential(θ). Therefore, we are done.

MGF technique: We derive the mgf of U = Y 2 and show that it matches the mgf of an
exponential random variable with mean θ. The mgf of U is

mU (t) = E(etU ) = E(etY
2
) =

∫ ∞
0

ety
2 × 2y

θ
e−y

2/θdy =

∫ ∞
0

2y

θ
ety

2−y2/θdy.

In the exponent of ety
2−y2/θ, write

ty2 − y2

θ
= −y2

(
1

θ
− t
)

= −y2
/(

1

θ
− t
)−1

= −y2/η,

where η =
(
1
θ − t

)−1
. Therefore, the last integral becomes

mU (t) =

∫ ∞
0

2y

θ
ety

2−y2/θdy =

∫ ∞
0

2y

θ
e−y

2/ηdy.

Now, let
u = y2 =⇒ du = 2y dy.

The limits on the integral do not change under this transformation. Note that

y : 0→∞ =⇒ u : 0→∞.

Therefore,

mU (t) =

∫ ∞
0

2y

θ
e−u/η

du

2y
=

∫ ∞
0

1

θ
e−u/ηdu =

1

θ

(
−ηe−u/η

∣∣∣∞
0

)
=
η

θ
(1− 0) =

η

θ
,

provided that

η > 0 ⇐⇒ t <
1

θ
.

Therefore, for t < 1/θ, we have

mU (t) =
1

θ

(
1

1
θ − t

)
=

1

θ

(
θ

1− θt

)
=

1

1− θt
.

We recognize this mgf as the mgf of an exponential random variable with mean θ. Because
mgfs are unique, we know U ∼ exponential(θ).
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(b) In HW1, we derived the mean and variance of Y ∼Weibull(m, θ) to be

E(Y ) = θ
1
m Γ

(
1

m
+ 1

)
V (Y ) = θ

2
m

{
Γ

(
2

m
+ 1

)
−
[
Γ

(
1

m
+ 1

)]2}
.

Therefore, for Y ∼ Raleigh(θ), put in m = 2 and we get

E(Y ) = θ
1
2 Γ

(
3

2

)
= θ

1
2

1

2
Γ

(
1

2

)
=

√
πθ

2
.

and

V (Y ) = θ

{
Γ

(
2

2
+ 1

)
−
[
Γ

(
1

2
+ 1

)]2}
= θ

{
Γ(2)−

[
Γ

(
3

2

)]2}

= θ

{
1−

[
1

2
Γ

(
1

2

)]2}
= θ

(
1− π

4

)
.

6.40. We know that Y ∼ N (0, 1) =⇒ Y 2 ∼ χ2(1). Therefore, Y 2
1 and Y 2

2 are independent
random variables, both distributed as χ2(1). Recall the χ2(1) mgf is given by

mY 2(t) =

(
1

1− 2t

)1/2

,

for t < 1/2. Therefore, the mgf of U = Y 2
1 + Y 2

2 is

mU (t) = mY 2
1

(t)mY 2
2

(t) =

(
1

1− 2t

)1/2( 1

1− 2t

)1/2

=

(
1

1− 2t

)2/2

.

We recognize this mgf as the mgf of a χ2 random variable with 2 degrees of freedom. Because
mgfs are unique, we know U = Y 2

1 + Y 2
2 ∼ χ2(2); i.e., the degrees of freedom simply “add.”

6.42. The weight capacity Y1 ∼ N (5000, 3002). The load Y2 ∼ N (4000, 4002). The elevator
will be overloaded when Y1 < Y2; i.e., when U = Y1 − Y2 < 0. Therefore, we want to find
P (Y1 < Y2) = P (U < 0).

In Example 6.13 (notes), we proved that linear combinations of mutually independent normal
random variables are normally distributed; i.e.,

U =
n∑
i=1

aiYi ∼ N

(
n∑
i=1

aiµi,

n∑
i=1

a2iσ
2
i

)
.

Note that
U = Y1 − Y2

is a special case of the linear combination above with n = 2, a1 = 1, and a2 = −1. Therefore,
we know U = Y1 − Y2 is normally distributed with mean

a1µ1 + a2µ2 = 1(5000) + (−1)(4000) = 1000
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and variance
a21σ

2
1 + a22σ

2
2 = 12(3002) + (−1)2(4002) = 5002.

That is, U ∼ N (1000, 5002). We can calculate P (U < 0) in R; note that

> pnorm(0,1000,500)

[1] 0.02275013

Therefore,
P (Y1 < Y2) = P (U < 0) ≈ 0.0228.

The pdf of U ∼ N (1000, 5002) is shown at the top of this page with the probability P (U < 0)
shown shaded.

6.45. We are given

Y1 = amount of sand (in yards) ∼ N (10, 0.52)

Y2 = amount of cement (in 100s lbs) ∼ N (4, 0.22).

The total cost is
U = 100 + 7Y1 + 3Y2.

We are told to assume that Y1 and Y2 are independent. Under this assumption,

7Y1 + 3Y2

is a linear combination of independent normally distributed random variables with n = 2,
a1 = 7, and a2 = 3. Therefore, it too is normally distributed with mean

a1µ1 + a2µ2 = 7(10) + 3(4) = 82
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and variance
a21σ

2
1 + a22σ

2
2 = 72(0.52) + 32(0.22) = 12.61.

That is,
7Y1 + 3Y2 ∼ N (82, 12.61).

Now, the additive constant 100 merely shifts the N (82, 12.61) distribution 100 units to the
right; therefore,

U = 100 + 7Y1 + 3Y2 ∼ N (182, 12.61).

Note: If you dislike the previous argument, you can derive the mgf of U = 100 + 7Y1 + 3Y2
directly and show that it matches the mgf of a N (182, 12.61) random variable. We do this now:

mU (t) = E(etU ) = E[et(100+7Y1+3Y2)]

= E(e100te7tY1e3tY2)
Y1⊥⊥Y2= e100tE(e7tY1)E(e3tY2) = e100tmY1(7t)mY2(3t),

where mY1(t) is the N (10, 0.52) mgf and where mY2(t) is the N (4, 0.22) mgf. We have

mY1(t) = exp

[
10t+

(0.52)t2

2

]
=⇒ mY1(7t) = exp

[
70t+

49(0.52)t2

2

]
and

mY2(t) = exp

[
4t+

(0.22)t2

2

]
=⇒ mY1(3t) = exp

[
12t+

9(0.22)t2

2

]
Therefore,

mU (t) = e100tmY1(7t)mY2(3t) = exp(100t) exp

[
70t+

49(0.52)t2

2

]
exp

[
12t+

9(0.22)t2

2

]
= exp

{
182t+

[49(0.52) + 9(0.22)]t2

2

}
= exp

(
182t+

12.61t2

2

)
.

We recognize this as the mgf of a normal random variable with mean µ = 182 and variance
σ2 = 12.61. Because mgfs are unique, we know that U ∼ N (182, 12.61). Now, the bidding
problem being asked is this. What should the manager bid on the job so that the total cost U
will exceed the bid with probability 0.01? Let b denote the bid the manager makes. S/he wants
to select b so that

P (U > b) = 0.01.

In other words, s/he wants to bid the 99th percentile (p = 0.99 quantile) of U ∼ N (182, 12.61).
In R, we have

> qnorm(0.99,182,sqrt(12.61))

[1] 190.261

Therefore, if s/he sets the bid at b = 190.261, then the total cost U will exceed this value with
probability 0.01. See the figure at the top of the next page.
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Remark: We are asked to comment on whether the amount of sand required and the amount
of cement required for the construction job are independent; i.e., if it is reasonable to assume Y1
and Y2 are independent. On practical grounds, they probably aren’t; in fact, we would expect
them to be positively correlated (i.e., the more sand required for the construction job, the more
cement will be required). Therefore, the solution we obtained (b = 190.261) isn’t 100 percent
correct if Y1 and Y2 are in fact correlated. However, we made the independence assumption so
that we could get a solution. This is commonly done in statistical problems−we sometimes are
forced to make simplifying assumptions so that we can get an answer. If we wanted to solve
P (U > b) = 0.01 while allowing for dependence between Y1 and Y2, we would have to know the
covariance of Y1 and Y2. If we knew this, then we could recalculate the distribution of U . It is
still normal with mean E(U) = 182, but the variance would change as follows:

V (U) = V (100 + 7Y1 + 3Y2) = V (7Y1 + 3Y2) = 49V (Y1) + 9V (Y2) + 2(7)(3) Cov(Y1, Y2)︸ ︷︷ ︸
would need this

.

6.48. In this problem, we are given Y1 ∼ N (0, 1), Y2 ∼ N (0, 1), and Y1 and Y2 are independent.
We want to find the distribution of

U =
√
Y 2
1 + Y 2

2 .

From Exercise 6.40, we already know

V = Y 2
1 + Y 2

2 ∼ χ2(2).

Therefore, all we have to do is find the pdf of U = h(V ) =
√
V , where V ∼ χ2(2)

d
= gamma(1, 2).

The pdf of V , for v > 0, is

fV (v) =
1

Γ(1)21
v1−1e−v/2 =

1

2
e−v/2,

which is the exponential(2) pdf with mean β = 2. In other words, the χ2(2) pdf, the gamma(1, 2)
pdf, and the exponential(2) pdf are all the same pdf! Interesting!!
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To find the pdf of U = h(V ) =
√
V , we will use the transformation method. Note that

v > 0 =⇒ u =
√
v > 0.

Therefore, the support of U is RU = {u : u > 0}. Also, the function u = h(v) =
√
v is 1:1 over

RV = {v : v > 0}, the support of V . Therefore, we can use the transformation method.

The inverse transformation is found as follows:

u = h(v) =
√
v =⇒ v = u2 = h−1(u).

Also, the derivative of the inverse transformation is

d

du
h−1(u) =

d

du
u2 = 2u.

Therefore, for u > 0, the pdf of U is

fU (u) = fV (h−1(u))

∣∣∣∣ dduh−1(u)

∣∣∣∣ =
1

2
e−u

2/2 × |2u| = ue−u
2/2.

Summarizing, the pdf of U = h(V ) =
√
V is

fU (u) =

{
ue−u

2/2, u > 0

0, otherwise.

Comparing this pdf to the general form of the Weibull(m, θ) pdf

fU (u) =


m

θ
um−1e−u

m/θ, u > 0

0, otherwise,

we see that U ∼Weibull(m = 2, θ = 2). This pdf is shown above.
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6.52. (a) We did this part in Example 6.11 of the notes. Suppose Y1 ∼ Poisson(λ1) and
Y2 ∼ Poisson(λ2). If Y1 and Y2 are independent, the mgf of U = Y1 + Y2 is

mU (t) = mY1(t)mY2(t) = eλ1(e
t−1)eλ2(e

t−1) = e(λ1+λ2)(e
t−1).

We recognize this as the mgf of a Poisson random variable with mean λ1 + λ2. Because mgfs
are unique, we know that U ∼ Poisson(λ1 + λ2). The pmf of U is

pU (u) =


(λ1 + λ2)

ue−(λ1+λ2)

u!
, u = 0, 1, 2, ...

0, otherwise.

(b) In this part, we want to find pY1|U (y1|m), the conditional pmf of Y1, given U = Y1+Y2 = m.
First note that if the sum U = Y1 + Y2 = m, then the possible values of Y1 are {y1 : y1 =
0, 1, 2, ...,m}. Therefore, the conditional pmf pY1|U (y1|m) is nonzero for these values of y1, and
is otherwise equal to zero. Recall from STAT 511, the definition of a conditional pmf

pY1|U (y1|m) =
pY1,U (y1,m)

pU (m)
=
P (Y1 = y1, U = m)

P (U = m)
.

We know

P (U = m) = pU (m) =
(λ1 + λ2)

me−(λ1+λ2)

m!

from part (a). How do we find the joint probability P (Y1 = y1, U = m)? We don’t have the
joint pmf of Y1 and U , so it is not clear how to calculate this. The key is to note that

{Y1 = y1, U = m} = {Y1 = y1, Y1 + Y2 = m} = {Y1 = y1, Y2 = m− y1}.

Therefore,

P (Y1 = y1, U = m) = P (Y1 = y1, Y2 = m− y1)
Y1⊥⊥Y2= P (Y1 = y1)P (Y2 = m− y1).

We can calculate these two probabilities because Y1 ∼ Poisson(λ1) and Y2 ∼ Poisson(λ2); that
is,

P (Y1 = y1) =
λy11 e

−λ1

y1!
and P (Y2 = m− y1) =

λm−y12 e−λ2

(m− y1)!
.

Therefore,

pY1|U (y1|m) =
P (Y1 = y1)P (Y2 = m− y1)

P (U = m)

=

λy11 e
−λ1

y1!

λm−y12 e−λ2

(m− y1)!
(λ1 + λ2)

me−(λ1+λ2)

m!

=
m!

y1!(m− y1)!
λy11

(λ1 + λ2)y1
λm−y12

(λ1 + λ2)m−y1

=

(
m

y1

)(
λ1

λ1 + λ2

)y1 ( λ2
λ1 + λ2

)m−y1
=

(
m

y1

)(
λ1

λ1 + λ2

)y1 (
1− λ1

λ1 + λ2

)m−y1
.
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Summarizing,

pY1|U (y1|m) =


(
m

y1

)(
λ1

λ1 + λ2

)y1 (
1− λ1

λ1 + λ2

)m−y1
, y1 = 0, 1, 2, ...,m

0, otherwise.

We recognize this as the pmf of a binomial random variable with number of trials m and success
probability

p =
λ1

λ1 + λ2
.

Therefore, we have shown

Y1 ∼ Poisson(λ1), Y2 ∼ Poisson(λ2), Y1 ⊥⊥ Y2 =⇒ Y1|Y1 + Y2 = m ∼ b
(
m,

λ1
λ1 + λ2

)
.

6.57. We are given

Y1 ∼ gamma(α1, β)

Y2 ∼ gamma(α2, β)

...

Yn ∼ gamma(αn, β)

and Y1, Y2, ..., Yn are mutually independent. We want to find the distribution of

U = Y1 + Y2 + · · ·+ Yn.

Whenever you are asked to find the distribution of the sum of mutually independent
random variables, try the mgf method. The mgf of the sum U is

mU (t) = mY1(t)mY2(t) · · ·mYn(t)

=

(
1

1− βt

)α1

×
(

1

1− βt

)α2

× · · · ×
(

1

1− βt

)αn

=

(
1

1− βt

)α1+α2+···+αn

.

We recognize this as the mgf of a gamma random variable with shape parameter α1+α2+· · ·+αn
and scale parameter β. Because mgfs are unique, we know

U = Y1 + Y2 + · · ·+ Yn ∼ gamma(α1 + α2 + · · ·+ αn, β).

6.59. We are given Y1 ∼ χ2(ν1), Y2 ∼ χ2(ν2), and Y1 and Y2 are independent. We want to find
the distribution of U = Y1 + Y2. Use the mgf method. The mgf of the sum U is

mU (t) = mY1(t)mY2(t) =

(
1

1− 2t

)ν1/2( 1

1− 2t

)ν2/2
=

(
1

1− 2t

)(ν1+ν2)/2

.

We recognize this as the mgf of a χ2 random variable with degrees of freedom ν1 + ν2. Because
mgfs are unique, we know U = Y1 + Y2 ∼ χ2(ν1 + ν2).

Note: See how easy the mgf method is? As an exercise, try to redo Exercise 6.59 by using the
cdf method; i.e., derive FU (u) = P (U ≤ u) directly and then take derivatives. You should get
the χ2(ν1 + ν2) pdf. This argument is much harder, but it still should work.
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6.63. The authors have already done the bivariate transformation for us. Starting with Y1 ∼
exponential(β), Y2 ∼ exponential(β), and Y1 ⊥⊥ Y2, the authors show the joint distribution of

U1 =
Y1

Y1 + Y2
and U2 = Y1 + Y2

is

fU1,U2(u1, u2) =


1

β2
u2e
−u2/β, 0 < u1 < 1, u2 > 0

0, otherwise.

Go through the bivariate transformation again and re-derive this yourself for practice. Note
the support of (U1, U2) is

RU1,U2 = {(u1, u2) : 0 < u1 < 1, u2 > 0}.

This region is shown above. The joint pdf fU1,U2(u1, u2) is a three-dimensional function which
takes the value 1

β2u2e
−u2/β over this region and is otherwise equal to zero.

(a) To find the marginal distribution of U1, we integrate the joint pdf fU1,U2(u1, u2) over u2.
For 0 < u1 < 1, we have

fU1(u1) =

∫ ∞
u2=0

fU1,U2(u1, u2)du2 =

∫ ∞
u2=0

1

β2
u2e
−u2/βdu2 = 1,

because 1
β2u2e

−u2/β is the gamma(2, β) pdf and we are integrating over (0,∞). We have shown

fU1(u1) =

{
1, 0 < u1 < 1

0, otherwise.

We recognize this as the U(0, 1) pdf; i.e., U1 ∼ U(0, 1).
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(b) To find the marginal distribution of U2, we integrate the joint pdf fU1,U2(u1, u2) over u1.
For u2 > 0, we have

fU2(u2) =

∫ 1

u1=0
fU1,U2(u1, u2)du1 =

∫ 1

u1=0

1

β2
u2e
−u2/βdu1

=
1

β2
u2e
−u2/β

∫ 1

u1=0
1du1 =

1

β2
u2e
−u2/β.

We have shown

fU2(u2) =


1

β2
u2e
−u2/β, u2 > 0

0, otherwise.

We recognize this as the gamma(2, β) pdf; i.e., U2 ∼ gamma(2, β).

(c) Note that we can write

fU1,U2(u1, u2) =
1

β2
u2e
−u2/β = 1× 1

β2
u2e
−u2/β = fU1(u1)fU2(u2).

Because the joint pdf can be written as the product of the marginal pdfs, we know U1 ⊥⊥ U2.

6.68. We start with the random variables Y1 and Y2, whose joint pdf is

fY1,Y2(y1, y2) =

{
8y1y2, 0 ≤ y1 ≤ y2 ≤ 1

0, otherwise.

Note the support of (Y1, Y2) is

RY1,Y2 = {(y1, y2) : 0 ≤ y1 ≤ y2 ≤ 1}.

The graph of RY1,Y2 is shown at the top of the next page (left). The joint pdf fY1,Y2(y1, y2)
is a three-dimensional function which takes the value 8y1y2 over this triangular region and is
otherwise equal to zero.

Our goal is to find the joint pdf of

U1 = h1(Y1, Y2) =
Y1
Y2

U2 = h2(Y1, Y2) = Y2.

We use a bivariate transformation. We first find the support of (U1, U2). Note that

0 ≤ y1 ≤ y2 ≤ 1 =⇒ u1 =
y1
y2
∈ [0, 1]

and 0 ≤ u2 = y2 ≤ 1. Therefore, the support of (U1, U2) is

RU1,U2 = {(u1, u2) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1}.

The graph of RU1,U2 is shown at the top of the next page (right).
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To verify the transformation above is one-to-one, we show h(y1, y2) = h(y∗1, y
∗
2) =⇒ y1 = y∗1

and y2 = y∗2, where

h

(
y1
y2

)
=

(
h1(y1, y2)
h2(y1, y2)

)
=

( y1
y2
y2

)
.

Suppose h(y1, y2) = h(y∗1, y
∗
2). Clearly y2 = y∗2. Then the first equation implies y1 = y∗1.

Therefore the transformation is one to one.

The inverse transformation is found by solving

u1 =
y1
y2

u2 = y2

for y1 = h−11 (u1, u2) and y2 = h−12 (u1, u2). Straightforward algebra shows

y1 = h−11 (u1, u2) = u1u2

y2 = h−12 (u1, u2) = u2.

The Jacobian is

J = det

∣∣∣∣∣∣∣∣
∂h−11 (u1, u2)

∂u1

∂h−11 (u1, u2)

∂u2
∂h−12 (u1, u2)

∂u1

∂h−12 (u1, u2)

∂u2

∣∣∣∣∣∣∣∣ = det

∣∣∣∣ u2 u1
0 1

∣∣∣∣ = u2(1)− u1(0) = u2.

Therefore, the joint pdf of (U1, U2), where nonzero, is

fU1,U2(u1, u2) = fY1,Y2(h−11 (u1, u2), h
−1
2 (u1, u2))|J |

= fY1,Y2(u1u2, u2)|u2|
= 8(u1u2)u2 × u2
= 8u1u

3
2.
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Summarizing, the joint pdf of (U1, U2) is

fU1,U2(u1, u2) =

{
8u1u

3
2, 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1

0, otherwise.

(b) Note that we can write

fU1,U2(u1, u2) = 8u1u
3
2 = 2u1 × 4u32 = fU1(u1)fU2(u2).

We recognize

fU1(u1) =

{
2u1, 0 ≤ u1 ≤ 1

0, otherwise

and

fU2(u2) =

{
4u32, 0 ≤ u2 ≤ 1

0, otherwise

as beta pdfs. Specifically, U1 ∼ beta(2, 1) and U2 ∼ beta(4, 1). Because the joint pdf can be
written as the product of the marginal pdfs, we know U1 ⊥⊥ U2.

PAGE 13


