STAT 512 HW2 SOLUTIONS

6.34. A Rayleigh random variable Y has pdf

2y _y2/9
— >0
=3 0" 7
0, otherwise.
Note that this pdf arises when
m m—1_—y™/0 >0
fr=4 0t

0, otherwise,

and m = 2. In other words, the Rayleigh(f) distribution is a special case of the Weibull(m, 0)
distribution with m = 2. We proved the general result

Y ~ Weibull(m,0) = U =h(Y) =Y"™ ~ exponential(f)
in Exercise 6.26 (HW1) by using the transformation method. Therefore, arguing
Y ~ Rayleigh(d) = U = h(Y) =Y? ~ exponential(f)

is a special case of this general argument when m = 2. For fun, let’s prove this result (when
m = 2) by using the cdf technique and the mgf technique (in other words, all three methods
“work” in this instance).

CDF technique: Let’s first derive the cdf of Y ~ Rayleigh(f). When y < 0, the cdf

Fy(y)—/_:fy(t)dt—/y 0dt 0.

— 00

For y > 0, the cdf
Y 0 Y 9t v ot
Fy(y) = / fy (t)dt = / 0dt+/ ge*ﬁ/@dt = / ge*ﬁ/edt.
oo o o ;

0

In the last integral, let

The limits on the integral change under this transformation. Note that
t:0—y = u:0—y>

Therefore, for y > 0,

Yot v* ot du
Fr) = [ Getia = [T e S
.0 .0 2

2

vl
_ - —u/o d
= e U
/O 0

1 y?
- —u/0 _ —u/0
7 ( e ‘0 > e

0, y<0
Fr(w) = 1—e /% y>o.

0
= 1-e v/
2

Yy

Summarizing,
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We are now ready to derive the cdf of U = Y2. For u > 0, it is

Fy(u)=P(U <u) = P(Y?<u)

= P(Y <u)
= Fiy(WVu) = 1- e~ W0 — /b,
Summarizing,
0, u <0
Fylu) = { 1—e w9 4 >0.

We recognize this as the cdf of U ~ exponential(#). Therefore, we are done.

MGF technique: We derive the mgf of U = Y? and show that it matches the mgf of an
exponential random variable with mean 6. The mgf of U is

mu(t) = BE) = B) = [Tt ety — [T ot
0 0

In the exponent of ey’ —v?/ 0 write

2 1 1 !
ty® — % = -y <9 —t> = —y2/ (0 —t) = —y*/n,

where 1 = (% — t)fl. Therefore, the last integral becomes

2 2
mU(t) :/ ?yety27y2/9dy :/ ?ye*yQ/ndy
0 0
Now, let
v=1> = du=2ydy.

The limits on the integral do not change under this transformation. Note that
y:0 =200 = u:0— o0

Therefore,

> 2y —u/n du /OO 1 —u/n 1 —u/n ee n n
= =7 == - —_ (= _Th_opy="
my (t) /0 e o ; 7€ du 7 ( ne ‘0 ) 9( 0) 2

provided that

1
n>0 <— t<§.

Therefore, for ¢t < 1/6, we have

oLl L1 oy 1
T TNT =) Te\1—et) T 1-6r

We recognize this mgf as the mgf of an exponential random variable with mean 6. Because
mgfs are unique, we know U ~ exponential(f).
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(b) In HW1, we derived the mean and variance of Y ~ Weibull(m, 8) to be

E(Y) = 6wl <;+1>

= ot e (o))

Therefore, for Y ~ Raleigh(#), put in m = 2 and we get

E(Y) =0T (‘Z) = eéér G) _ Y8,

6.40. We know that Y ~ N(0,1) = Y2 ~ x2(1). Therefore, Y* and Y3} are independent
random variables, both distributed as x2(1). Recall the x?(1) mgf is given by

1 1/2
my=(t) = <1—2t> )

for t < 1/2. Therefore, the mgf of U = Y + Y3 is

s (t) = mys (O)mys (8) = (1_1%)/ (1_1%)/ - (1_1%)/

We recognize this mgf as the mgf of a x? random variable with 2 degrees of freedom. Because
mgfs are unique, we know U = Y + YZ ~ x?(2); i.e., the degrees of freedom simply “add.”

6.42. The weight capacity Y ~ N(5000,300%). The load Ya ~ N(4000,400%). The elevator
will be overloaded when Y7 < Y5; i.e., when U = Y; — Y5 < 0. Therefore, we want to find
P(Y1 <Yy)=P(U <0).

In Example 6.13 (notes), we proved that linear combinations of mutually independent normal
random variables are normally distributed; i.e.,

n n n
V=3 i~ N (Zaim, Zagag) .
=1 =1 =1
Note that
U=Y1-Y,

is a special case of the linear combination above with n = 2, a; = 1, and ag = —1. Therefore,
we know U = Y] — Y5 is normally distributed with mean

a1 + agps = 1(5000) + (—1)(4000) = 1000
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and variance
aio? + a303 = 12(300%) + (—1)%(400%) = 500%.

That is, U ~ A (1000, 5002). We can calculate P(U < 0) in R; note that

> pnorm(0,1000,500)
[1] 0.02275013

Therefore,
P(Y1 <Y3)=P(U <0) = 0.0228.

The pdf of U ~ N(1000,500%) is shown at the top of this page with the probability P(U < 0)
shown shaded.

6.45. We are given

Y: = amount of sand (in yards) ~ A(10,0.5%)
Y, = amount of cement (in 100s Ibs) ~ N(4,0.2%).

The total cost is
U =100+ 7Y7 + 3Ys.

We are told to assume that Y7 and Y, are independent. Under this assumption,
7Y1 + 3Ys

is a linear combination of independent normally distributed random variables with n = 2,
a1 = 7, and ag = 3. Therefore, it too is normally distributed with mean

a1 + aspy = 7(10) + 3(4) =82
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and variance
a3l + a305 = 73(0.5%) + 3%(0.2%) = 12.61.
That is,
7Y1 + 3Ys ~ N(82,12.61).

Now, the additive constant 100 merely shifts the A/(82,12.61) distribution 100 units to the
right; therefore,
U =100 + 7Y1 + 3Y, ~ N (182,12.61).

Note: If you dislike the previous argument, you can derive the mgf of U = 100 + 7Y; + 3Y5
directly and show that it matches the mgf of a N'(182,12.61) random variable. We do this now:

mU(t) = E(etU) — E[et(100+7Y1+3y2)]

E(6100t67tY1 e3tY2)
Y1£Y2 elOOtE(e7tY1 )E(QSth) — GIOOtmyl (7t)my2 (Bt),

where my, (t) is the N(10,0.5%) mgf and where my, (t) is the N'(4,0.22) mgf. We have

my, (t) = exp [1015 + (0'522#2- = my, (7t) = exp -7015 + 49(0252)#}
and
my, (t) = exp [4t + (0.222)752_ = my,(3t) = exp _1215 + 9(0222)7&2}
Therefore, -
my (t) = emy, (Tt)my, (3t) = exp(100t) exp [7075 + 49(0'52)’51 exp [12t + 9(0'22)#}
~ exp {18% | [49005?) ;9(0.22)]#}
— exp <182t+ 12'6”2) _

We recognize this as the mgf of a normal random variable with mean p = 182 and variance
02 = 12.61. Because mgfs are unique, we know that U ~ AN(182,12.61). Now, the bidding
problem being asked is this. What should the manager bid on the job so that the total cost U
will exceed the bid with probability 0.017 Let b denote the bid the manager makes. S/he wants
to select b so that

P(U >b) =0.01.

In other words, s/he wants to bid the 99th percentile (p = 0.99 quantile) of U ~ N (182,12.61).

In R, we have

> gnorm(0.99,182,sqrt(12.61))
[1] 190.261

Therefore, if s/he sets the bid at b = 190.261, then the total cost U will exceed this value with
probability 0.01. See the figure at the top of the next page.
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Remark: We are asked to comment on whether the amount of sand required and the amount
of cement required for the construction job are independent; i.e., if it is reasonable to assume Y
and Y> are independent. On practical grounds, they probably aren’t; in fact, we would expect
them to be positively correlated (i.e., the more sand required for the construction job, the more
cement will be required). Therefore, the solution we obtained (b = 190.261) isn’t 100 percent
correct if Y7 and Y5 are in fact correlated. However, we made the independence assumption so
that we could get a solution. This is commonly done in statistical problems—we sometimes are
forced to make simplifying assumptions so that we can get an answer. If we wanted to solve
P(U > b) = 0.01 while allowing for dependence between Y; and Y, we would have to know the
covariance of Y7 and Ys. If we knew this, then we could recalculate the distribution of U. It is
still normal with mean E(U) = 182, but the variance would change as follows:

V(U) = V(100 + 71 + 3Y3) = V(7] + 3Y3) = 49V (Y1) + 9V (Y2) + 2(7)(3) Cov(Y1,Ya) .

would need this

6.48. In this problem, we are given Y7 ~ N (0,1), Y2 ~ N(0,1), and Y] and Y5 are independent.

We want to find the distribution of
U=\/Y2+Y?

From Exercise 6.40, we already know
V=YY~ x(2).
Therefore, all we have to do is find the pdf of U = h(V) = vV, where V ~ x%(2) 4 gamma(1l,2).
The pdf of V, for v > 0, is
_ 1 1-1_—v/2 _ 1 —v/2
fr(v) = rm2t’ ¢ T 2%

which is the exponential(2) pdf with mean 8 = 2. In other words, the x?(2) pdf, the gamma(1, 2)
pdf, and the exponential(2) pdf are all the same pdf! Interesting!!
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To find the pdf of U = h(V) = V/V, we will use the transformation method. Note that

v>0 = u=+v>0.

Therefore, the support of U is Ry = {u : u > 0}. Also, the function u = h(v) = /v is 1:1 over
Ry = {v :v > 0}, the support of V. Therefore, we can use the transformation method.

The inverse transformation is found as follows:

u=hv)=vv = v=u>=h"1(u).

Also, the derivative of the inverse transformation is

d . _, d ,
_— = =2
du () duu b
Therefore, for u > 0, the pdf of U is
-1 d, 4 u?/2 u?/2
fulw) = fr( @) |oh 7 w)| = e x 2ul = e

Summarizing, the pdf of U = h(V) = V/V is

{ ue*“2/2, u>0

0, otherwise.

Comparing this pdf to the general form of the Weibull(m, §) pdf

—u u>0

fo(u)=< 0

m 1 _.m
m—1,-u / 9’
0, otherwise,

we see that U ~ Weibull(m = 2,60 = 2). This pdf is shown above.
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6.52. (a) We did this part in Example 6.11 of the notes. Suppose Y; ~ Poisson(\;) and
Y5 ~ Poisson(Az2). If Y7 and Y5 are independent, the mgf of U = Y] + Y5 is

my(t) = my, (H)my, (t) = M D era(e'=1) = (tatra)(e~1)

We recognize this as the mgf of a Poisson random variable with mean A; + 2. Because mgfs
are unique, we know that U ~ Poisson(A; + A2). The pmf of U is

(A1 + Ag)te”(Pah2)

pu(u) = u!
0, otherwise.

. u=0,1,2,..

(b) In this part, we want to find py; |7 (y1/m), the conditional pmf of Y1, given U = Y1+ Y2 = m.
First note that if the sum U = Y; + Yo = m, then the possible values of Y] are {y; : y1 =
0,1,2,...,m}. Therefore, the conditional pmf py, ;7(y1|m) is nonzero for these values of y1, and
is otherwise equal to zero. Recall from STAT 511, the definition of a conditional pmf

pyiv(yilm) = Pyi,u(y1,m) — P(Y1 =y1,U =m)
1|U PU(m) P(U _ m)

We know rtre)
AL+ Ag) e ArTA2
P(U = m) = py(m) = L1F 2
m)!
from part (a). How do we find the joint probability P(Y1 = y1,U = m)? We don’t have the
joint pmf of Y7 and U, so it is not clear how to calculate this. The key is to note that

M=y, U=m} = YVi=y,Y1+Yo=m} = {YVi=y,Yo=m—y}.
Therefore,
Y1 ALYs
PYi=y,U=m) = PWVi=y,Yo=m—y1) =" PY1=y)P(Yo=m—y).

We can calculate these two probabilities because Y; ~ Poisson(A1) and Y2 ~ Poisson(Az); that
is,

Ayl 6*)\1 )\m_yl 67}\2
=) w7 o =m ) (m —y1)!
Therefore,
 PM=y)P(Yo=m—1y1)
le‘U(y1|m) - P(U — m)

)\21/18—)\1 )\gn*yle—)\g
vl (m—y)!
()\1 + )\Q)me*(AhL)\Q)
m!
m! A Ay
yil(m —y1)! (A + A% (A + Ag)m— ¥

- (G G -GG )
B U1 AL+ Ag AL+ Ao N Y1 A1+ Ao AL+ Ao '

PAGE 8
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Summarizing,

o Gi) (-ads)
1- i =0,1,2,...m
Py (yilm) = <y1> <>\1+)\2 A1+ Ao n

0, otherwise.

We recognize this as the pmf of a binomial random variable with number of trials m and success

probability
A1

- A+ A

p

Therefore, we have shown

A
Y1 ~ Poisson(A1), Ya ~ Poisson(A2), Y1 L Yy — Yi|[Vi+Yo=m~b (m, 3 _:/\ ) .
1 2

6.57. We are given

Y; ~ gamma(ay, §)

Y, ~ gamma(ag, §)

Y, ~ gamma(an, )
and Y7, Y5, ..., Y, are mutually independent. We want to find the distribution of
U=Y1+Yo+---+Y,

Whenever you are asked to find the distribution of the sum of mutually independent
random variables, try the mgf method. The mgf of the sum U is

my(t) = my,()my,(t) - - my, (1)

B 1 aq y 1 o2 S 1 [e79) B 1 ajtaz+t-tan
- \1-pt 1—pBt 1—p3t \1-pt '

We recognize this as the mgf of a gamma random variable with shape parameter vy +ao+- - -+ay,
and scale parameter 3. Because mgfs are unique, we know

U=Y1+Ye+ - +Y, ~gamma(a; + ag + - + ap, B).

6.59. We are given Y7 ~ x%(v1), Y2 ~ x?(2), and Y; and Y3 are independent. We want to find
the distribution of U = Y7 + Y5. Use the mgf method. The mgf of the sum U is

1 l/1/2 1 I/2/2 1 (V1+1/2)/2
my (t) = my, (t)my, (t) = (1—275) (1_2t> = (1_2t> '

We recognize this as the mgf of a x? random variable with degrees of freedom vy + v5. Because
mgfs are unique, we know U = Y] + Ya ~ x?(v1 + 12).

Note: See how easy the mgf method is? As an exercise, try to redo Exercise 6.59 by using the
cdf method; i.e., derive Fyy(u) = P(U < u) directly and then take derivatives. You should get
the x2(v1 + o) pdf. This argument is much harder, but it still should work.
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uz

up

6.63. The authors have already done the bivariate transformation for us. Starting with ¥; ~
exponential(3), Yo ~ exponential(3), and Y; 1L Y3, the authors show the joint distribution of

Yy
Uy = and Us =Y + Y5
1 Y1+}/2 2 1 2
is .
—u267“2/6, O<up <1, up >0
fU1,U2(u17u2) - BZ

0, otherwise.
Go through the bivariate transformation again and re-derive this yourself for practice. Note
the support of (Uy, Us) is
Ry, v, = {(u1,u2) : 0 <up <1, ug > 0}.

This region is shown above. The joint pdf fy, 1, (u1,u2) is a three-dimensional function which
takes the value B—Inge_W/ B over this region and is otherwise equal to zero.

(a) To find the marginal distribution of U;, we integrate the joint pdf fy, v, (u1,u2) over us.
For 0 < u; < 1, we have

o0

o0 1 »
Jo,(u1) = / Jon,us (w1, ug)dus = / @uze 2Bug =1,

2:0 u2 =0

because éuze_w/ﬁ is the gamma(2, §) pdf and we are integrating over (0, 00). We have shown

1, O<uy <1

fur (ur) = {

0, otherwise.

We recognize this as the U4(0,1) pdf; i.e., Uy ~U(0,1).

PAGE 10



STAT 512 HW2 SOLUTIONS

(b) To find the marginal distribution of Us, we integrate the joint pdf fy, v, (u1,u2) over u.
For ugy > 0, we have

1 1
1
fU2(u2) = / fUl,UQ (U17U2)d’u,1 = / 721(/2671”2//8(1“1
u1=0 u1=0 /8

T /ﬁ/l 1
= —uge 2 lduy = —uge *2/8.
52 u1=0 62

We have shown )
—uge’w/ﬁ, uy >0

foo(ug) =< B?

0, otherwise.

We recognize this as the gamma(2, 8) pdf; i.e., U ~ gamma(2, 3).

(c) Note that we can write

1 1
fU17U2 (ulvu2) = @UQe_U&/B =l @2@8_“2/6 = fUl (ul)fUz(UZ)-

Because the joint pdf can be written as the product of the marginal pdfs, we know Uy 1L Us.

6.68. We start with the random variables Y7 and Ys, whose joint pdf is

S8y1y2, 0<y1 <yp <1

0, otherwise.

thYz (yh y?) = {

Note the support of (Y7,Y5) is

Ryiy, = {(y1,92) : 0 <y1 <y < 1},

The graph of Ry, y, is shown at the top of the next page (left). The joint pdf fy, v, (y1,¥2)
is a three-dimensional function which takes the value 8yjyo over this triangular region and is
otherwise equal to zero.

Our goal is to find the joint pdf of

i
Yo
UQ = hQ(Yl,YQ) = Y2.

Up=h1,Ys) =

We use a bivariate transformation. We first find the support of (U, Usz). Note that

0<y1<y2<1 = u1=£€[071]

Y2
and 0 < ug =y < 1. Therefore, the support of (Uy, Uz) is

Ry, v, = {(u1,u2) : 0 <up <1, 0 <wug <1}

The graph of Ry, v, is shown at the top of the next page (right).
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Y2

Y1 Uy

To verify the transformation above is one-to-one, we show h(y1,y2) = h(yf,y5) = v1 =y

and yo = y5, where
Y1
h<y1>_<h1(y1,yz))_ —
= = Y2 .
Y2 ha(y1,y2) Yo

Suppose h(y1,y2) = h(y;,y3). Clearly yo = y3. Then the first equation implies y1 = yj.
Therefore the transformation is one to one.

The inverse transformation is found by solving

uy = ﬂ
Y2
U2 = Y2

for y; = hl_l(ul, ug) and yo = hy 1(ul, ug). Straightforward algebra shows
yi = hy'(ui,u2) = ujug
Yo = hy'(ui,uz) = ua.
The Jacobian is
8h1_1(U1, ’LL2) 8h1_1(u1, UQ)

- duy Oug - L - -
J =det Oy (un,uz) Dby ur, us) det 0 1 uz(1) —u1(0) = ua.
(911,1 8’“2
Therefore, the joint pdf of (Uy, Us), where nonzero, is
fUl,Uz (ulv u2) = fY1,Y2 (hl_l(ub u2)’ h2_1(u19 u2))|J|

= fyi,vo(u1uz, uz)|uz|

= 8(U1UQ)UQ X U9

3
= Suiuj.
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Summarizing, the joint pdf of (U, Us) is

Sujus, 0<u; <1,0<uy <1

fU1,U2(u17 Ug) - {

0, otherwise.
(b) Note that we can write
fUl,UQ (u1,u2) — 8“1“% - 2“1 X 4“% = fUl (ul)fUz(UQ)'

We recognize

2u;, 0<u <1
Jon(w) = { 0, otherwise
and
4u%, 0<uy <1
Jua(uz) = { 0, otherwise

as beta pdfs. Specifically, U; ~ beta(2,1) and Us ~ beta(4,1). Because the joint pdf can be
written as the product of the marginal pdfs, we know Uy 1L Us.
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