6.34. A Rayleigh random variable Y has pdf

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{2 y}{\theta} e^{-y^{2} / \theta}, & y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Note that this pdf arises when

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{m}{\theta} y^{m-1} e^{-y^{m} / \theta}, & y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

and $m=2$. In other words, the Rayleigh (θ) distribution is a special case of the Weibull (m, θ) distribution with $m=2$. We proved the general result

$$
Y \sim \operatorname{Weibull}(m, \theta) \Longrightarrow U=h(Y)=Y^{m} \sim \operatorname{exponential}(\theta)
$$

in Exercise 6.26 (HW1) by using the transformation method. Therefore, arguing

$$
Y \sim \operatorname{Rayleigh}(\theta) \Longrightarrow U=h(Y)=Y^{2} \sim \operatorname{exponential}(\theta)
$$

is a special case of this general argument when $m=2$. For fun, let's prove this result (when $m=2$) by using the cdf technique and the mgf technique (in other words, all three methods "work" in this instance).

CDF technique: Let's first derive the cdf of $Y \sim$ Rayleigh (θ). When $y \leq 0$, the cdf

$$
F_{Y}(y)=\int_{-\infty}^{y} f_{Y}(t) d t=\int_{-\infty}^{y} 0 d t=0
$$

For $y>0$, the cdf

$$
F_{Y}(y)=\int_{-\infty}^{y} f_{Y}(t) d t=\underbrace{\int_{-\infty}^{0} 0 d t}_{=0}+\int_{0}^{y} \frac{2 t}{\theta} e^{-t^{2} / \theta} d t=\int_{0}^{y} \frac{2 t}{\theta} e^{-t^{2} / \theta} d t
$$

In the last integral, let

$$
u=t^{2} \quad \Longrightarrow d u=2 t d t
$$

The limits on the integral change under this transformation. Note that

$$
t: 0 \rightarrow y \quad \Longrightarrow u: 0 \rightarrow y^{2}
$$

Therefore, for $y>0$,

$$
\begin{aligned}
F_{Y}(y)=\int_{0}^{y} \frac{2 t}{\theta} e^{-t^{2} / \theta} d t & =\int_{0}^{y^{2}} \frac{2 t}{\theta} e^{-u / \theta} \frac{d u}{2 t} \\
& =\int_{0}^{y^{2}} \frac{1}{\theta} e^{-u / \theta} d u \\
& =\frac{1}{\theta}\left(-\left.\theta e^{-u / \theta}\right|_{0} ^{y^{2}}\right)=\left.e^{-u / \theta}\right|_{y^{2}} ^{0}=1-e^{-y^{2} / \theta}
\end{aligned}
$$

Summarizing,

$$
F_{Y}(y)=\left\{\begin{array}{cl}
0, & y \leq 0 \\
1-e^{-y^{2} / \theta}, & y>0
\end{array}\right.
$$

We are now ready to derive the cdf of $U=Y^{2}$. For $u>0$, it is

$$
\begin{aligned}
F_{U}(u)=P(U \leq u) & =P\left(Y^{2} \leq u\right) \\
& =P(Y \leq \sqrt{u}) \\
& =F_{Y}(\sqrt{u})=1-e^{-(\sqrt{u})^{2} / \theta}=1-e^{-u / \theta}
\end{aligned}
$$

Summarizing,

$$
F_{U}(u)=\left\{\begin{array}{cc}
0, & u \leq 0 \\
1-e^{-u / \theta}, & u>0
\end{array}\right.
$$

We recognize this as the cdf of $U \sim \operatorname{exponential}(\theta)$. Therefore, we are done.
MGF technique: We derive the mgf of $U=Y^{2}$ and show that it matches the mgf of an

$$
m_{U}(t)=E\left(e^{t U}\right)=E\left(e^{t Y^{2}}\right)=\int_{0}^{\infty} e^{t y^{2}} \times \frac{2 y}{\theta} e^{-y^{2} / \theta} d y=\int_{0}^{\infty} \frac{2 y}{\theta} e^{t y^{2}-y^{2} / \theta} d y
$$

In the exponent of $e^{t y^{2}-y^{2} / \theta}$, write

$$
t y^{2}-\frac{y^{2}}{\theta}=-y^{2}\left(\frac{1}{\theta}-t\right)=-y^{2} /\left(\frac{1}{\theta}-t\right)^{-1}=-y^{2} / \eta
$$

where $\eta=\left(\frac{1}{\theta}-t\right)^{-1}$. Therefore, the last integral becomes

$$
m_{U}(t)=\int_{0}^{\infty} \frac{2 y}{\theta} e^{t y^{2}-y^{2} / \theta} d y=\int_{0}^{\infty} \frac{2 y}{\theta} e^{-y^{2} / \eta} d y
$$

Now, let

$$
u=y^{2} \quad \Longrightarrow \quad d u=2 y d y
$$

The limits on the integral do not change under this transformation. Note that

$$
y: 0 \rightarrow \infty \quad \Longrightarrow \quad u: 0 \rightarrow \infty
$$

Therefore,

$$
m_{U}(t)=\int_{0}^{\infty} \frac{2 y}{\theta} e^{-u / \eta} \frac{d u}{2 y}=\int_{0}^{\infty} \frac{1}{\theta} e^{-u / \eta} d u=\frac{1}{\theta}\left(-\left.\eta e^{-u / \eta}\right|_{0} ^{\infty}\right)=\frac{\eta}{\theta}(1-0)=\frac{\eta}{\theta}
$$

provided that

$$
\eta>0 \Longleftrightarrow t<\frac{1}{\theta}
$$

Therefore, for $t<1 / \theta$, we have

$$
m_{U}(t)=\frac{1}{\theta}\left(\frac{1}{\frac{1}{\theta}-t}\right)=\frac{1}{\theta}\left(\frac{\theta}{1-\theta t}\right)=\frac{1}{1-\theta t}
$$

We recognize this mgf as the mgf of an exponential random variable with mean θ. Because mgfs are unique, we know $U \sim \operatorname{exponential}(\theta)$.
(b) In HW1, we derived the mean and variance of $Y \sim \operatorname{Weibull}(m, \theta)$ to be

$$
\begin{aligned}
E(Y) & =\theta^{\frac{1}{m}} \Gamma\left(\frac{1}{m}+1\right) \\
V(Y) & =\theta^{\frac{2}{m}}\left\{\Gamma\left(\frac{2}{m}+1\right)-\left[\Gamma\left(\frac{1}{m}+1\right)\right]^{2}\right\} .
\end{aligned}
$$

Therefore, for $Y \sim \operatorname{Raleigh}(\theta)$, put in $m=2$ and we get

$$
E(Y)=\theta^{\frac{1}{2}} \Gamma\left(\frac{3}{2}\right)=\theta^{\frac{1}{2}} \frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi \theta}}{2} .
$$

and

$$
\begin{aligned}
V(Y)=\theta\left\{\Gamma\left(\frac{2}{2}+1\right)-\left[\Gamma\left(\frac{1}{2}+1\right)\right]^{2}\right\} & =\theta\left\{\Gamma(2)-\left[\Gamma\left(\frac{3}{2}\right)\right]^{2}\right\} \\
& =\theta\left\{1-\left[\frac{1}{2} \Gamma\left(\frac{1}{2}\right)\right]^{2}\right\}=\theta\left(1-\frac{\pi}{4}\right) .
\end{aligned}
$$

6.40. We know that $Y \sim \mathcal{N}(0,1) \Longrightarrow Y^{2} \sim \chi^{2}(1)$. Therefore, Y_{1}^{2} and Y_{2}^{2} are independent random variables, both distributed as $\chi^{2}(1)$. Recall the $\chi^{2}(1)$ mgf is given by

$$
m_{Y^{2}}(t)=\left(\frac{1}{1-2 t}\right)^{1 / 2}
$$

for $t<1 / 2$. Therefore, the mgf of $U=Y_{1}^{2}+Y_{2}^{2}$ is

$$
m_{U}(t)=m_{Y_{1}^{2}}(t) m_{Y_{2}^{2}}(t)=\left(\frac{1}{1-2 t}\right)^{1 / 2}\left(\frac{1}{1-2 t}\right)^{1 / 2}=\left(\frac{1}{1-2 t}\right)^{2 / 2}
$$

We recognize this mgf as the mgf of a χ^{2} random variable with 2 degrees of freedom. Because mgfs are unique, we know $U=Y_{1}^{2}+Y_{2}^{2} \sim \chi^{2}(2)$; i.e., the degrees of freedom simply "add."
6.42. The weight capacity $Y_{1} \sim \mathcal{N}\left(5000,300^{2}\right)$. The load $Y_{2} \sim \mathcal{N}\left(4000,400^{2}\right)$. The elevator will be overloaded when $Y_{1}<Y_{2}$; i.e., when $U=Y_{1}-Y_{2}<0$. Therefore, we want to find $P\left(Y_{1}<Y_{2}\right)=P(U<0)$.

In Example 6.13 (notes), we proved that linear combinations of mutually independent normal random variables are normally distributed; i.e.,

$$
U=\sum_{i=1}^{n} a_{i} Y_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right) .
$$

Note that

$$
U=Y_{1}-Y_{2}
$$

is a special case of the linear combination above with $n=2, a_{1}=1$, and $a_{2}=-1$. Therefore, we know $U=Y_{1}-Y_{2}$ is normally distributed with mean

$$
a_{1} \mu_{1}+a_{2} \mu_{2}=1(5000)+(-1)(4000)=1000
$$

and variance

$$
a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}=1^{2}\left(300^{2}\right)+(-1)^{2}\left(400^{2}\right)=500^{2} .
$$

That is, $U \sim \mathcal{N}\left(1000,500^{2}\right)$. We can calculate $P(U<0)$ in R; note that
> pnorm $(0,1000,500)$
[1] 0.02275013
Therefore,

$$
P\left(Y_{1}<Y_{2}\right)=P(U<0) \approx 0.0228 .
$$

The pdf of $U \sim \mathcal{N}\left(1000,500^{2}\right)$ is shown at the top of this page with the probability $P(U<0)$ shown shaded.
6.45. We are given

$$
\begin{aligned}
& Y_{1}=\text { amount of sand (in yards) } \sim \mathcal{N}\left(10,0.5^{2}\right) \\
& Y_{2}=\text { amount of cement }(\text { in } 100 \text { s lbs }) \sim \mathcal{N}\left(4,0.2^{2}\right) .
\end{aligned}
$$

The total cost is

$$
U=100+7 Y_{1}+3 Y_{2} .
$$

We are told to assume that Y_{1} and Y_{2} are independent. Under this assumption,

$$
7 Y_{1}+3 Y_{2}
$$

is a linear combination of independent normally distributed random variables with $n=2$, $a_{1}=7$, and $a_{2}=3$. Therefore, it too is normally distributed with mean

$$
a_{1} \mu_{1}+a_{2} \mu_{2}=7(10)+3(4)=82
$$

and variance

$$
a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}=7^{2}\left(0.5^{2}\right)+3^{2}\left(0.2^{2}\right)=12.61 .
$$

That is,

$$
7 Y_{1}+3 Y_{2} \sim \mathcal{N}(82,12.61)
$$

Now, the additive constant 100 merely shifts the $\mathcal{N}(82,12.61)$ distribution 100 units to the right; therefore,

$$
U=100+7 Y_{1}+3 Y_{2} \sim \mathcal{N}(182,12.61)
$$

Note: If you dislike the previous argument, you can derive the mgf of $U=100+7 Y_{1}+3 Y_{2}$ directly and show that it matches the mgf of a $\mathcal{N}(182,12.61)$ random variable. We do this now:

$$
\begin{aligned}
m_{U}(t)=E\left(e^{t U}\right) & =E\left[e^{t\left(100+7 Y_{1}+3 Y_{2}\right)}\right] \\
& =E\left(e^{100 t} e^{7 t Y_{1}} e^{3 t Y_{2}}\right) \\
& Y_{1} \Perp Y_{2} \\
= & e^{100 t} E\left(e^{7 t Y_{1}}\right) E\left(e^{3 t Y_{2}}\right)=e^{100 t} m_{Y_{1}}(7 t) m_{Y_{2}}(3 t),
\end{aligned}
$$

where $m_{Y_{1}}(t)$ is the $\mathcal{N}\left(10,0.5^{2}\right) \mathrm{mgf}$ and where $m_{Y_{2}}(t)$ is the $\mathcal{N}\left(4,0.2^{2}\right) \mathrm{mgf}$. We have

$$
m_{Y_{1}}(t)=\exp \left[10 t+\frac{\left(0.5^{2}\right) t^{2}}{2}\right] \Longrightarrow m_{Y_{1}}(7 t)=\exp \left[70 t+\frac{49\left(0.5^{2}\right) t^{2}}{2}\right]
$$

and

$$
m_{Y_{2}}(t)=\exp \left[4 t+\frac{\left(0.2^{2}\right) t^{2}}{2}\right] \Longrightarrow m_{Y_{1}}(3 t)=\exp \left[12 t+\frac{9\left(0.2^{2}\right) t^{2}}{2}\right]
$$

Therefore,

$$
\begin{aligned}
m_{U}(t)=e^{100 t} m_{Y_{1}}(7 t) m_{Y_{2}}(3 t) & =\exp (100 t) \exp \left[70 t+\frac{49\left(0.5^{2}\right) t^{2}}{2}\right] \exp \left[12 t+\frac{9\left(0.2^{2}\right) t^{2}}{2}\right] \\
& =\exp \left\{182 t+\frac{\left[49\left(0.5^{2}\right)+9\left(0.2^{2}\right)\right] t^{2}}{2}\right\} \\
& =\exp \left(182 t+\frac{12.61 t^{2}}{2}\right)
\end{aligned}
$$

We recognize this as the mgf of a normal random variable with mean $\mu=182$ and variance $\sigma^{2}=12.61$. Because mgfs are unique, we know that $U \sim \mathcal{N}(182,12.61)$. Now, the bidding problem being asked is this. What should the manager bid on the job so that the total cost U will exceed the bid with probability 0.01 ? Let b denote the bid the manager makes. $\mathrm{S} /$ he wants to select b so that

$$
P(U>b)=0.01
$$

In other words, $\mathrm{s} /$ he wants to bid the 99th percentile ($p=0.99$ quantile) of $U \sim \mathcal{N}(182,12.61)$. In R , we have

```
> qnorm(0.99,182,sqrt(12.61))
```

[1] 190.261
Therefore, if $\mathrm{s} /$ he sets the bid at $b=190.261$, then the total cost U will exceed this value with probability 0.01 . See the figure at the top of the next page.

Remark: We are asked to comment on whether the amount of sand required and the amount of cement required for the construction job are independent; i.e., if it is reasonable to assume Y_{1} and Y_{2} are independent. On practical grounds, they probably aren't; in fact, we would expect them to be positively correlated (i.e., the more sand required for the construction job, the more cement will be required). Therefore, the solution we obtained ($b=190.261$) isn't 100 percent correct if Y_{1} and Y_{2} are in fact correlated. However, we made the independence assumption so that we could get a solution. This is commonly done in statistical problems-we sometimes are forced to make simplifying assumptions so that we can get an answer. If we wanted to solve $P(U>b)=0.01$ while allowing for dependence between Y_{1} and Y_{2}, we would have to know the covariance of Y_{1} and Y_{2}. If we knew this, then we could recalculate the distribution of U. It is still normal with mean $E(U)=182$, but the variance would change as follows:

$$
V(U)=V\left(100+7 Y_{1}+3 Y_{2}\right)=V\left(7 Y_{1}+3 Y_{2}\right)=49 V\left(Y_{1}\right)+9 V\left(Y_{2}\right)+2(7)(3) \underbrace{\operatorname{Cov}\left(Y_{1}, Y_{2}\right)}_{\text {would need this }} .
$$

6.48. In this problem, we are given $Y_{1} \sim \mathcal{N}(0,1), Y_{2} \sim \mathcal{N}(0,1)$, and Y_{1} and Y_{2} are independent. We want to find the distribution of

$$
U=\sqrt{Y_{1}^{2}+Y_{2}^{2}} .
$$

From Exercise 6.40, we already know

$$
V=Y_{1}^{2}+Y_{2}^{2} \sim \chi^{2}(2) .
$$

Therefore, all we have to do is find the pdf of $U=h(V)=\sqrt{V}$, where $V \sim \chi^{2}(2) \stackrel{d}{=} \operatorname{gamma}(1,2)$. The pdf of V, for $v>0$, is

$$
f_{V}(v)=\frac{1}{\Gamma(1) 2^{1}} v^{1-1} e^{-v / 2}=\frac{1}{2} e^{-v / 2}
$$

which is the exponential(2) pdf with mean $\beta=2$. In other words, the $\chi^{2}(2) \operatorname{pdf}$, the gamma(1,2) pdf, and the exponential(2) pdf are all the same pdf! Interesting!!

To find the pdf of $U=h(V)=\sqrt{V}$, we will use the transformation method. Note that

$$
v>0 \Longrightarrow u=\sqrt{v}>0
$$

Therefore, the support of U is $R_{U}=\{u: u>0\}$. Also, the function $u=h(v)=\sqrt{v}$ is 1:1 over $R_{V}=\{v: v>0\}$, the support of V. Therefore, we can use the transformation method.

The inverse transformation is found as follows:

$$
u=h(v)=\sqrt{v} \Longrightarrow v=u^{2}=h^{-1}(u) .
$$

Also, the derivative of the inverse transformation is

$$
\frac{d}{d u} h^{-1}(u)=\frac{d}{d u} u^{2}=2 u .
$$

Therefore, for $u>0$, the pdf of U is

$$
f_{U}(u)=f_{V}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right|=\frac{1}{2} e^{-u^{2} / 2} \times|2 u|=u e^{-u^{2} / 2} .
$$

Summarizing, the pdf of $U=h(V)=\sqrt{V}$ is

$$
f_{U}(u)=\left\{\begin{array}{cc}
u e^{-u^{2} / 2}, & u>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Comparing this pdf to the general form of the $\operatorname{Weibull}(m, \theta) \operatorname{pdf}$

$$
f_{U}(u)=\left\{\begin{array}{cc}
\frac{m}{\theta} u^{m-1} e^{-u^{m} / \theta}, & u>0 \\
0, & \text { otherwise },
\end{array}\right.
$$

we see that $U \sim \operatorname{Weibull}(m=2, \theta=2)$. This pdf is shown above.
6.52. (a) We did this part in Example 6.11 of the notes. Suppose $Y_{1} \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y_{2} \sim \operatorname{Poisson}\left(\lambda_{2}\right)$. If Y_{1} and Y_{2} are independent, the $m g f$ of $U=Y_{1}+Y_{2}$ is

$$
m_{U}(t)=m_{Y_{1}}(t) m_{Y_{2}}(t)=e^{\lambda_{1}\left(e^{t}-1\right)} e^{\lambda_{2}\left(e^{t}-1\right)}=e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)} .
$$

We recognize this as the mgf of a Poisson random variable with mean $\lambda_{1}+\lambda_{2}$. Because mgfs are unique, we know that $U \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$. The pmf of U is

$$
p_{U}(u)=\left\{\begin{array}{cc}
\frac{\left(\lambda_{1}+\lambda_{2}\right)^{u} e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{u!}, & u=0,1,2, \ldots \\
0, & \text { otherwise. }
\end{array}\right.
$$

(b) In this part, we want to find $p_{Y_{1} \mid U}\left(y_{1} \mid m\right)$, the conditional pmf of Y_{1}, given $U=Y_{1}+Y_{2}=m$. First note that if the sum $U=Y_{1}+Y_{2}=m$, then the possible values of Y_{1} are $\left\{y_{1}: y_{1}=\right.$ $0,1,2, \ldots, m\}$. Therefore, the conditional pmf $p_{Y_{1} \mid U}\left(y_{1} \mid m\right)$ is nonzero for these values of y_{1}, and is otherwise equal to zero. Recall from STAT 511, the definition of a conditional pmf

$$
p_{Y_{1} \mid U}\left(y_{1} \mid m\right)=\frac{p_{Y_{1}, U}\left(y_{1}, m\right)}{p_{U}(m)}=\frac{P\left(Y_{1}=y_{1}, U=m\right)}{P(U=m)} .
$$

We know

$$
P(U=m)=p_{U}(m)=\frac{\left(\lambda_{1}+\lambda_{2}\right)^{m} e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{m!}
$$

from part (a). How do we find the joint probability $P\left(Y_{1}=y_{1}, U=m\right)$? We don't have the joint pmf of Y_{1} and U, so it is not clear how to calculate this. The key is to note that

$$
\left\{Y_{1}=y_{1}, U=m\right\}=\left\{Y_{1}=y_{1}, Y_{1}+Y_{2}=m\right\}=\left\{Y_{1}=y_{1}, Y_{2}=m-y_{1}\right\} .
$$

Therefore,

$$
P\left(Y_{1}=y_{1}, U=m\right)=P\left(Y_{1}=y_{1}, Y_{2}=m-y_{1}\right) \stackrel{Y_{1}}{\cong} Y_{2} P\left(Y_{1}=y_{1}\right) P\left(Y_{2}=m-y_{1}\right) .
$$

We can calculate these two probabilities because $Y_{1} \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y_{2} \sim \operatorname{Poisson}\left(\lambda_{2}\right)$; that is,

$$
P\left(Y_{1}=y_{1}\right)=\frac{\lambda_{1}^{y_{1}} e^{-\lambda_{1}}}{y_{1}!} \quad \text { and } \quad P\left(Y_{2}=m-y_{1}\right)=\frac{\lambda_{2}^{m-y_{1}} e^{-\lambda_{2}}}{\left(m-y_{1}\right)!} .
$$

Therefore,

$$
\begin{aligned}
p_{Y_{1} \mid U}\left(y_{1} \mid m\right) & =\frac{P\left(Y_{1}=y_{1}\right) P\left(Y_{2}=m-y_{1}\right)}{P(U=m)} \\
& =\frac{\frac{\lambda_{1}^{y_{1}} e^{-\lambda_{1}}}{y_{1}!} \frac{\lambda_{2}^{m-y_{1}} e^{-\lambda_{2}}}{\left(m-y_{1}\right)!}}{\frac{\left(\lambda_{1}+\lambda_{2}\right)^{m} e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{m!}} \\
& =\frac{m!}{y_{1}!\left(m-y_{1}\right)!} \frac{\lambda_{1}^{y_{1}}}{\left(\lambda_{1}+\lambda_{2}\right)^{y_{1}}} \frac{\lambda_{2}^{m-y_{1}}}{\left(\lambda_{1}+\lambda_{2}\right)^{m-y_{1}}} \\
& =\binom{m}{y_{1}}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{y_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{m-y_{1}}=\binom{m}{y_{1}}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{y_{1}}\left(1-\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{m-y_{1}} .
\end{aligned}
$$

Summarizing,

$$
p_{Y_{1} \mid U}\left(y_{1} \mid m\right)=\left\{\begin{array}{cc}
\binom{m}{y_{1}}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{y_{1}}\left(1-\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{m-y_{1}}, & y_{1}=0,1,2, \ldots, m \\
0, & \text { otherwise }
\end{array}\right.
$$

We recognize this as the pmf of a binomial random variable with number of trials m and success probability

$$
p=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
$$

Therefore, we have shown

$$
Y_{1} \sim \operatorname{Poisson}\left(\lambda_{1}\right), Y_{2} \sim \operatorname{Poisson}\left(\lambda_{2}\right), Y_{1} \Perp Y_{2} \Longrightarrow Y_{1} \left\lvert\, Y_{1}+Y_{2}=m \sim b\left(m, \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)\right.
$$

6.57. We are given

$$
\begin{aligned}
Y_{1} & \sim \operatorname{gamma}\left(\alpha_{1}, \beta\right) \\
Y_{2} & \sim \operatorname{gamma}\left(\alpha_{2}, \beta\right) \\
& \vdots \\
Y_{n} & \sim \operatorname{gamma}\left(\alpha_{n}, \beta\right)
\end{aligned}
$$

and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are mutually independent. We want to find the distribution of

$$
U=Y_{1}+Y_{2}+\cdots+Y_{n}
$$

Whenever you are asked to find the distribution of the sum of mutually independent random variables, try the mgf method. The mgf of the sum U is

$$
\begin{aligned}
m_{U}(t) & =m_{Y_{1}}(t) m_{Y_{2}}(t) \cdots m_{Y_{n}}(t) \\
& =\left(\frac{1}{1-\beta t}\right)^{\alpha_{1}} \times\left(\frac{1}{1-\beta t}\right)^{\alpha_{2}} \times \cdots \times\left(\frac{1}{1-\beta t}\right)^{\alpha_{n}}=\left(\frac{1}{1-\beta t}\right)^{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}} .
\end{aligned}
$$

We recognize this as the mgf of a gamma random variable with shape parameter $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$ and scale parameter β. Because mgfs are unique, we know

$$
U=Y_{1}+Y_{2}+\cdots+Y_{n} \sim \operatorname{gamma}\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}, \beta\right)
$$

6.59. We are given $Y_{1} \sim \chi^{2}\left(\nu_{1}\right), Y_{2} \sim \chi^{2}\left(\nu_{2}\right)$, and Y_{1} and Y_{2} are independent. We want to find the distribution of $U=Y_{1}+Y_{2}$. Use the mgf method. The mgf of the sum U is

$$
m_{U}(t)=m_{Y_{1}}(t) m_{Y_{2}}(t)=\left(\frac{1}{1-2 t}\right)^{\nu_{1} / 2}\left(\frac{1}{1-2 t}\right)^{\nu_{2} / 2}=\left(\frac{1}{1-2 t}\right)^{\left(\nu_{1}+\nu_{2}\right) / 2}
$$

We recognize this as the mgf of a χ^{2} random variable with degrees of freedom $\nu_{1}+\nu_{2}$. Because mgfs are unique, we know $U=Y_{1}+Y_{2} \sim \chi^{2}\left(\nu_{1}+\nu_{2}\right)$.

Note: See how easy the mgf method is? As an exercise, try to redo Exercise 6.59 by using the cdf method; i.e., derive $F_{U}(u)=P(U \leq u)$ directly and then take derivatives. You should get the $\chi^{2}\left(\nu_{1}+\nu_{2}\right)$ pdf. This argument is much harder, but it still should work.

6.63. The authors have already done the bivariate transformation for us. Starting with $Y_{1} \sim$ exponential $(\beta), Y_{2} \sim \operatorname{exponential}(\beta)$, and $Y_{1} \Perp Y_{2}$, the authors show the joint distribution of

$$
U_{1}=\frac{Y_{1}}{Y_{1}+Y_{2}} \quad \text { and } \quad U_{2}=Y_{1}+Y_{2}
$$

is

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\left\{\begin{array}{cc}
\frac{1}{\beta^{2}} u_{2} e^{-u_{2} / \beta}, & 0<u_{1}<1, u_{2}>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Go through the bivariate transformation again and re-derive this yourself for practice. Note the support of $\left(U_{1}, U_{2}\right)$ is

$$
R_{U_{1}, U_{2}}=\left\{\left(u_{1}, u_{2}\right): 0<u_{1}<1, u_{2}>0\right\} .
$$

This region is shown above. The joint pdf $f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)$ is a three-dimensional function which takes the value $\frac{1}{\beta^{2}} u_{2} e^{-u_{2} / \beta}$ over this region and is otherwise equal to zero.
(a) To find the marginal distribution of U_{1}, we integrate the joint pdf $f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)$ over u_{2}. For $0<u_{1}<1$, we have

$$
f_{U_{1}}\left(u_{1}\right)=\int_{u_{2}=0}^{\infty} f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right) d u_{2}=\int_{u_{2}=0}^{\infty} \frac{1}{\beta^{2}} u_{2} e^{-u_{2} / \beta} d u_{2}=1,
$$

because $\frac{1}{\beta^{2}} u_{2} e^{-u_{2} / \beta}$ is the gamma $(2, \beta)$ pdf and we are integrating over $(0, \infty)$. We have shown

$$
f_{U_{1}}\left(u_{1}\right)= \begin{cases}1, & 0<u_{1}<1 \\ 0, & \text { otherwise } .\end{cases}
$$

We recognize this as the $\mathcal{U}(0,1)$ pdf; i.e., $U_{1} \sim \mathcal{U}(0,1)$.
(b) To find the marginal distribution of U_{2}, we integrate the joint pdf $f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)$ over u_{1}. For $u_{2}>0$, we have

$$
\begin{aligned}
f_{U_{2}}\left(u_{2}\right)=\int_{u_{1}=0}^{1} f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right) d u_{1} & =\int_{u_{1}=0}^{1} \frac{1}{\beta^{2}} u_{2} e^{-u_{2} / \beta} d u_{1} \\
& =\frac{1}{\beta^{2}} u_{2} e^{-u_{2} / \beta} \int_{u_{1}=0}^{1} 1 d u_{1}=\frac{1}{\beta^{2}} u_{2} e^{-u_{2} / \beta}
\end{aligned}
$$

We have shown

$$
f_{U_{2}}\left(u_{2}\right)=\left\{\begin{array}{cc}
\frac{1}{\beta^{2}} u_{2} e^{-u_{2} / \beta}, & u_{2}>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

We recognize this as the $\operatorname{gamma}(2, \beta) \operatorname{pdf}$; i.e., $U_{2} \sim \operatorname{gamma}(2, \beta)$.
(c) Note that we can write

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\frac{1}{\beta^{2}} u_{2} e^{-u_{2} / \beta}=1 \times \frac{1}{\beta^{2}} u_{2} e^{-u_{2} / \beta}=f_{U_{1}}\left(u_{1}\right) f_{U_{2}}\left(u_{2}\right) .
$$

Because the joint pdf can be written as the product of the marginal pdfs, we know $U_{1} \Perp U_{2}$.
6.68. We start with the random variables Y_{1} and Y_{2}, whose joint pdf is

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cc}
8 y_{1} y_{2}, & 0 \leq y_{1} \leq y_{2} \leq 1 \\
0, & \text { otherwise } .
\end{array}\right.
$$

Note the support of $\left(Y_{1}, Y_{2}\right)$ is

$$
R_{Y_{1}, Y_{2}}=\left\{\left(y_{1}, y_{2}\right): 0 \leq y_{1} \leq y_{2} \leq 1\right\} .
$$

The graph of $R_{Y_{1}, Y_{2}}$ is shown at the top of the next page (left). The joint pdf $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ is a three-dimensional function which takes the value $8 y_{1} y_{2}$ over this triangular region and is otherwise equal to zero.

Our goal is to find the joint pdf of

$$
\begin{aligned}
& U_{1}=h_{1}\left(Y_{1}, Y_{2}\right)=\frac{Y_{1}}{Y_{2}} \\
& U_{2}=h_{2}\left(Y_{1}, Y_{2}\right)=Y_{2} .
\end{aligned}
$$

We use a bivariate transformation. We first find the support of $\left(U_{1}, U_{2}\right)$. Note that

$$
0 \leq y_{1} \leq y_{2} \leq 1 \quad \Longrightarrow \quad u_{1}=\frac{y_{1}}{y_{2}} \in[0,1]
$$

and $0 \leq u_{2}=y_{2} \leq 1$. Therefore, the support of $\left(U_{1}, U_{2}\right)$ is

$$
R_{U_{1}, U_{2}}=\left\{\left(u_{1}, u_{2}\right): 0 \leq u_{1} \leq 1,0 \leq u_{2} \leq 1\right\} .
$$

The graph of $R_{U_{1}, U_{2}}$ is shown at the top of the next page (right).

To verify the transformation above is one-to-one, we show $h\left(y_{1}, y_{2}\right)=h\left(y_{1}^{*}, y_{2}^{*}\right) \Longrightarrow y_{1}=y_{1}^{*}$ and $y_{2}=y_{2}^{*}$, where

$$
h\binom{y_{1}}{y_{2}}=\binom{h_{1}\left(y_{1}, y_{2}\right)}{h_{2}\left(y_{1}, y_{2}\right)}=\binom{\frac{y_{1}}{y_{2}}}{y_{2}} .
$$

Suppose $h\left(y_{1}, y_{2}\right)=h\left(y_{1}^{*}, y_{2}^{*}\right)$. Clearly $y_{2}=y_{2}^{*}$. Then the first equation implies $y_{1}=y_{1}^{*}$. Therefore the transformation is one to one.

The inverse transformation is found by solving

$$
\begin{aligned}
& u_{1}=\frac{y_{1}}{y_{2}} \\
& u_{2}=y_{2}
\end{aligned}
$$

for $y_{1}=h_{1}^{-1}\left(u_{1}, u_{2}\right)$ and $y_{2}=h_{2}^{-1}\left(u_{1}, u_{2}\right)$. Straightforward algebra shows

$$
\begin{aligned}
& y_{1}=h_{1}^{-1}\left(u_{1}, u_{2}\right)=u_{1} u_{2} \\
& y_{2}=h_{2}^{-1}\left(u_{1}, u_{2}\right)=u_{2} .
\end{aligned}
$$

The Jacobian is

$$
J=\operatorname{det}\left|\begin{array}{ll}
\frac{\partial h_{1}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{1}} & \frac{\partial h_{1}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{2}} \\
\frac{\partial h_{2}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{1}} & \frac{\partial h_{2}^{-1}\left(u_{1}, u_{2}\right)}{\partial u_{2}}
\end{array}\right|=\operatorname{det}\left|\begin{array}{cc}
u_{2} & u_{1} \\
0 & 1
\end{array}\right|=u_{2}(1)-u_{1}(0)=u_{2} .
$$

Therefore, the joint pdf of $\left(U_{1}, U_{2}\right)$, where nonzero, is

$$
\begin{aligned}
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right) & =f_{Y_{1}, Y_{2}}\left(h_{1}^{-1}\left(u_{1}, u_{2}\right), h_{2}^{-1}\left(u_{1}, u_{2}\right)\right)|J| \\
& =f_{Y_{1}, Y_{2}}\left(u_{1} u_{2}, u_{2}\right)\left|u_{2}\right| \\
& =8\left(u_{1} u_{2}\right) u_{2} \times u_{2} \\
& =8 u_{1} u_{2}^{3} .
\end{aligned}
$$

Summarizing, the joint pdf of $\left(U_{1}, U_{2}\right)$ is

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=\left\{\begin{array}{cc}
8 u_{1} u_{2}^{3}, & 0 \leq u_{1} \leq 1,0 \leq u_{2} \leq 1 \\
0, & \text { otherwise } .
\end{array}\right.
$$

(b) Note that we can write

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=8 u_{1} u_{2}^{3}=2 u_{1} \times 4 u_{2}^{3}=f_{U_{1}}\left(u_{1}\right) f_{U_{2}}\left(u_{2}\right) .
$$

We recognize

$$
f_{U_{1}}\left(u_{1}\right)=\left\{\begin{array}{cc}
2 u_{1}, & 0 \leq u_{1} \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
f_{U_{2}}\left(u_{2}\right)=\left\{\begin{array}{cc}
4 u_{2}^{3}, & 0 \leq u_{2} \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

as beta pdfs. Specifically, $U_{1} \sim \operatorname{beta}(2,1)$ and $U_{2} \sim \operatorname{beta}(4,1)$. Because the joint pdf can be written as the product of the marginal pdfs, we know $U_{1} \Perp U_{2}$.

